Synthesis and Characterization of Plasmonic Resonant Guided Wave Networks

被引:45
作者
Burgos, Stanley P. [1 ,2 ]
Lee, Ho W. [1 ,2 ]
Feigenbaum, Eyal [1 ]
Briggs, Ryan M. [1 ]
Atwater, Harry A. [1 ,2 ]
机构
[1] CALTECH, Thomas J Watson Labs Appl Phys, Pasadena, CA 91125 USA
[2] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Plasmonics; nanocircuits; resonant structures; power splitters; silicon photonics; logic devices; RING RESONATORS; POLARITONS; NANOCIRCUITS; PROPAGATION; DISPERSION; JUNCTIONS; COUPLERS; SURFACE; LOSSES;
D O I
10.1021/nl500694c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Composed of optical waveguides and power-splitting waveguide junctions in a network layout, resonant guided wave networks (RGWNs) split an incident wave into partial waves that resonantly interact within the network. Resonant guided wave networks have been proposed as nanoscale distributed optical networks (Feigenbaum and Atwater, Phys. Rev. Lett. 2010, 104, 147402) that can function as resonators and color routers (Feigenbaum et al. Opt. Express 2010, 18, 25584-25595). Here we experimentally characterize a plasmonic resonant guided wave network by demonstrating that a 90 degrees waveguide junction of two v-groove channel plasmon polariton (CPP) waveguides operates as a compact power. splitting element. Combining these plasmonic power splitters with CPP waveguides in a network layout, we characterize a prototype plasmonic nanocircuit composed of four v-groove waveguides in an evenly spaced 2 x 2 configuration, which functions as a simple, compact optical logic device at telecommunication wavelengths, routing different wavelengths to separate transmission ports due to the resulting network resonances. The resonant guided wave network exhibits the full permutation of Boolean on/off values at two output ports and can be extended to an eight-port configuration, unlike other photonic crystal and plasmonic add/drop filters, in which only two on/off states are accessible.
引用
收藏
页码:3284 / 3292
页数:9
相关论文
共 35 条
[31]   Wavelength selective nanophotonic components utilizing channel plasmon polaritons [J].
Volkov, Valentyn S. ;
Bozhevolnyi, Sergey I. ;
Devaux, Eloise ;
Laluet, Jean-Yves ;
Ebbesen, Thomas W. .
NANO LETTERS, 2007, 7 (04) :880-884
[32]  
Yariv A., 2007, Oxford Series in Electrical and Computer Engineering, V6th, P358
[33]   Dispersion of strongly confined channel plasmon polariton modes [J].
Zenin, Vladimir A. ;
Volkov, Valentyn S. ;
Han, Zhanghua ;
Bozhevolnyi, Sergey I. ;
Devaux, Eloisa ;
Ebbesen, Thomas W. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (07) :1596-1602
[34]   Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration [J].
Zhu, Shiyang ;
Liow, T. Y. ;
Lo, G. Q. ;
Kwong, D. L. .
OPTICS EXPRESS, 2011, 19 (09) :8888-8902
[35]   Plasmonics: the next chip-scale technology [J].
Zia, Rashid ;
Schuller, Jon A. ;
Chandran, Anu ;
Brongersma, Mark L. .
MATERIALS TODAY, 2006, 9 (7-8) :20-27