NOTES ON TWO KINDS OF SPECIAL VALUES FOR THE BELL POLYNOMIALS OF THE SECOND KIND

被引:10
作者
Qi, Feng [1 ,2 ,3 ]
Lim, Dongkyu [4 ]
Yao, Yong-Hong [3 ]
机构
[1] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Henan, Peoples R China
[2] Inner Mongolia Univ Nationalities, Coll Math, Tongliao 028043, Inner Mongolia, Peoples R China
[3] Tianjin Polytech Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[4] Andong Natl Univ, Dept Math Educ, Andong 36729, South Korea
基金
新加坡国家研究基金会;
关键词
special value; Bell polynomial of the second kind; factorial; relation; Faa di Bruno formula; identity; beta function; combinatorial analysis; Vandermonde convolution formula; INTEGRAL-REPRESENTATIONS; EXPRESSIONS; EXPLICIT; FORMULAS;
D O I
10.18514/MMN.2019.2635
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, by methods and techniques in combinatorial analysis and the theory of special functions, the authors discuss two kinds of special values for the Bell polynomials of the second kind for two special sequences, find a relation between these two kinds of special values for the Bell polynomials of the second kind, and derive an identity involving the combinatorial numbers.
引用
收藏
页码:465 / 474
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 2016, INTEGERS
[2]  
Charalambides C. A., 2002, CRC DISCR MATH APPL
[3]  
Clarkr CW., 2010, Nist Handbook of Mathematical Functions
[4]  
Comtet L., 1974, Advanced Combinatorics
[5]   Integral representations for multivariate logarithmic polynomials [J].
Qi, Feng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 336 :54-62
[6]   Some properties of central Delannoy numbers [J].
Qi, Feng ;
Cernanova, Viera ;
Shi, Xiao-Ting ;
Guo, Bai-Ni .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 328 :101-115
[7]  
Qi F, 2017, J APPL ANAL COMPUT, V7, P857
[8]   Explicit Formulas for Special Values of the Bell Polynomials of the Second Kind and for the Euler Numbers and Polynomials [J].
Qi, Feng ;
Guo, Bai-Ni .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (03)
[9]   Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers [J].
Qi, Feng ;
Shi, Xiao-Ting ;
Liu, Fang-Fang .
ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (02) :282-297
[10]  
Qi F, 2017, KRAGUJEV J MATH, V41, P121