Liouville theorems for elliptic systems and applications

被引:10
作者
D'Ambrosio, Lorenzo [1 ]
Mitidieri, Enzo [2 ]
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Trieste, Dipartimento Matemat & Geosci, I-34127 Trieste, Italy
关键词
Quasi linear elliptic systems; A priori estimates; Allen-Cahn equation; Ginzburg-Landau systems; Gross-Pitaevskii systems; Lichnerowicz's type equations; POSITIVE SOLUTIONS; INEQUALITIES; EQUATIONS;
D O I
10.1016/j.jmaa.2013.11.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let u be a solution of the system of PDE L(u) = f(u) in R-N, where L is a quasilinear second order elliptic operator in divergence form and f a given function. Our aim is to find uniform bounds for all possible solutions u of the system. In this paper we prove some bounds which are universal, in the sense that they are related only to the zeros of the nonlinearity I. Among others, the results apply to Allen-Cahn equation, Ginzburg-Landau systems, Gross-Pitaevskii systems and Lichnerowicz's type equations. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 138
页数:18
相关论文
共 26 条
[1]   Existence and a priori estimates for positive solutions of p-Laplace systems [J].
Azizieh, U ;
Clément, P ;
Mitidieri, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :422-442
[2]   Nonexistence results and estimates for some nonlinear elliptic problems [J].
Bidaut-Véron, MF ;
Pohozaev, S .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1) :1-49
[3]   Comments on two Notes by L. Ma and X. Xu [J].
Brezis, Haim .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) :269-271
[4]   A SEMI-LINEAR PARABOLIC-SYSTEM ARISING IN THE THEORY OF SUPERCONDUCTIVITY [J].
BROWN, KJ ;
DUNNE, PC ;
GARDNER, RA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 40 (02) :232-252
[5]  
Byeon J., 2012, CALC VAR, V47, P1
[6]   POSITIVE SOLUTIONS FOR A QUASI-LINEAR SYSTEM VIA BLOW-UP [J].
CLEMENT, P ;
MANASEVICH, R ;
MITIDIERI, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (12) :2071-2106
[7]  
D'Ambrosio L, 2012, ADV DIFFERENTIAL EQU, V17, P935
[8]   A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities [J].
D'Ambrosio, Lorenzo ;
Mitidieri, Enzo .
ADVANCES IN MATHEMATICS, 2010, 224 (03) :967-1020
[9]   A priori bounds versus multiple existence of positive solutions for a nonlinear Schrodinger system [J].
Dancer, E. N. ;
Wei, Juncheng ;
Weth, Tobias .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (03) :953-969
[10]   From Ginzburg-Landau to Gross-Pitaevskii [J].
Farina, A .
MONATSHEFTE FUR MATHEMATIK, 2003, 139 (04) :265-269