Unimodular Fourier multipliers on Wiener amalgam spaces

被引:11
作者
Cunanan, Jayson
Sugimoto, Mitsuru
机构
关键词
Fourier multipliers; Wiener amalgam spaces; Schrodinger operators; MODULATION SPACES;
D O I
10.1016/j.jmaa.2014.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the boundedness of unimodular Fourier multipliers on Wiener amalgam spaces. For a real-valued homogeneous function mu on R-n of degree alpha >= 2, we show the boundedness of the operator e(iu(D)) between the weighted Wiener amalgam space W-s(p,q) and W-P,W-q for all 1 <= p, q <= infinity and s > n(alpha - 2)vertical bar 1/p - 1/2 vertical bar + n vertical bar 1/p - 1/q vertical bar. This threshold is shown to be optimal for regions max(1/q,1/2) <= 1/p and min(1/q, 1/2) >= 1/p. Moreover, we give sufficient conditions for the boundedness of e(iu(D)) on W-p,W-q for alpha is an element of (0,2). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:738 / 747
页数:10
相关论文
共 50 条
  • [31] Unimodular multipliers on α-modulation spaces: a revisit with new method
    Zhao, Guoping
    Guo, Weichao
    ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (01)
  • [32] Norm estimates for τ-pseudodifferential operators in Wiener amalgam and modulation spaces
    Cordero, Elena
    D'Elia, Lorenza
    Trapasso, S. Ivan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 471 (1-2) : 541 - 563
  • [33] Metaplectic representation on Wiener amalgam spaces and applications to the Schrodinger equation
    Cordero, Elena
    Nicola, Fabio
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (02) : 506 - 534
  • [34] Transference of multilinear Fourier and Schur multipliers acting on noncommutative Lp-spaces for non-unimodular groups
    Vos, Gerrit
    GLASGOW MATHEMATICAL JOURNAL, 2024,
  • [35] Inclusion relations between LP-Sobolev and Wiener amalgam spaces
    Cunanan, Jayson
    Kobayashi, Masaharu
    Sugimoto, Mitsuru
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (01) : 239 - 254
  • [36] Fourier Multipliers and Littlewood-Paley for modulation spaces
    Mohanty, Parasar
    Shrivastava, Saurabh
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (2-3) : 324 - 338
  • [37] Almost Diagonalization of τ-Pseudodifferential Operators with Symbols in Wiener Amalgam and Modulation Spaces
    Cordero, Elena
    Nicola, Fabio
    Trapasso, S. Ivan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (04) : 1927 - 1957
  • [38] Piecewise linear and step Fourier multipliers for modulation spaces
    Feichtinger, Hans G.
    Weisz, Ferenc
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (05)
  • [39] Strichartz estimates for the Dirac flow in Wiener amalgam spaces
    Kim, Seongyeon
    Lee, Hyeongjin
    Seo, Ihyeok
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (12) : 5454 - 5468
  • [40] Dilation estimates for Wiener amalgam spaces of Orlicz type
    Aris, Busra
    Teofanov, Nenad
    Oztop, Serap
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2024, 22 (01):