Unimodular Fourier multipliers on Wiener amalgam spaces

被引:11
|
作者
Cunanan, Jayson
Sugimoto, Mitsuru
机构
关键词
Fourier multipliers; Wiener amalgam spaces; Schrodinger operators; MODULATION SPACES;
D O I
10.1016/j.jmaa.2014.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the boundedness of unimodular Fourier multipliers on Wiener amalgam spaces. For a real-valued homogeneous function mu on R-n of degree alpha >= 2, we show the boundedness of the operator e(iu(D)) between the weighted Wiener amalgam space W-s(p,q) and W-P,W-q for all 1 <= p, q <= infinity and s > n(alpha - 2)vertical bar 1/p - 1/2 vertical bar + n vertical bar 1/p - 1/q vertical bar. This threshold is shown to be optimal for regions max(1/q,1/2) <= 1/p and min(1/q, 1/2) >= 1/p. Moreover, we give sufficient conditions for the boundedness of e(iu(D)) on W-p,W-q for alpha is an element of (0,2). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:738 / 747
页数:10
相关论文
共 50 条
  • [21] Estimates for Unimodular Multipliers on Modulation Hardy Spaces
    Chen, Jiecheng
    Fan, Dashan
    Sun, Lijing
    Zhang, Chunjie
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [22] A class of Fourier multipliers for modulation spaces
    Bényi, A
    Grafakos, L
    Gröchenig, K
    Okoudjou, K
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (01) : 131 - 139
  • [23] Pointwise convergence in Pringsheim's sense of the summability of Fourier transforms on Wiener amalgam spaces
    Weisz, Ferenc
    MONATSHEFTE FUR MATHEMATIK, 2014, 175 (01): : 143 - 160
  • [24] Pointwise convergence in Pringsheim’s sense of the summability of Fourier transforms on Wiener amalgam spaces
    Ferenc Weisz
    Monatshefte für Mathematik, 2014, 175 : 143 - 160
  • [25] Boundedness of pseudodifferential operators with symbols in Wiener amalgam spaces on modulation spaces
    D'Elia, Lorenza
    Trapasso, S. Ivan
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2018, 9 (04) : 881 - 890
  • [26] COMPOSITION OPERATORS ON WIENER AMALGAM SPACES
    Bhimani, Divyang G.
    NAGOYA MATHEMATICAL JOURNAL, 2020, 240 : 257 - 274
  • [27] Boundedness of pseudodifferential operators with symbols in Wiener amalgam spaces on modulation spaces
    Lorenza D’Elia
    S. Ivan Trapasso
    Journal of Pseudo-Differential Operators and Applications, 2018, 9 : 881 - 890
  • [28] Wiener amalgam spaces for the fundamental identity of Gabor analysis
    Feichtinger, Hans G.
    Luef, Franz
    COLLECTANEA MATHEMATICA, 2006, : 233 - 253
  • [29] SHARPNESS OF SOME PROPERTIES OF WIENER AMALGAM AND MODULATION SPACES
    Cordero, Elena
    Nicola, Fabio
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 80 (01) : 105 - 116
  • [30] HORMANDER-TYPE THEOREMS ON UNIMODULAR MULTIPLIERS AND APPLICATIONS TO MODULATION SPACES
    Huang, Qiang
    Chen, Jiecheng
    Fan, Dashan
    Zhu, Xiangrong
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (01): : 85 - 103