Unimodular Fourier multipliers on Wiener amalgam spaces

被引:11
作者
Cunanan, Jayson
Sugimoto, Mitsuru
机构
关键词
Fourier multipliers; Wiener amalgam spaces; Schrodinger operators; MODULATION SPACES;
D O I
10.1016/j.jmaa.2014.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the boundedness of unimodular Fourier multipliers on Wiener amalgam spaces. For a real-valued homogeneous function mu on R-n of degree alpha >= 2, we show the boundedness of the operator e(iu(D)) between the weighted Wiener amalgam space W-s(p,q) and W-P,W-q for all 1 <= p, q <= infinity and s > n(alpha - 2)vertical bar 1/p - 1/2 vertical bar + n vertical bar 1/p - 1/q vertical bar. This threshold is shown to be optimal for regions max(1/q,1/2) <= 1/p and min(1/q, 1/2) >= 1/p. Moreover, we give sufficient conditions for the boundedness of e(iu(D)) on W-p,W-q for alpha is an element of (0,2). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:738 / 747
页数:10
相关论文
共 18 条
[1]  
[Anonymous], C MATH SOC JANOS BOL
[2]   Unimodular Fourier multipliers for modulation spaces [J].
Benyi, Arpad ;
Groechenig, Karlheinz ;
Okoudjou, Kasso A. ;
Rogers, Luke G. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 246 (02) :366-384
[3]   Modulation spaces, Wiener amalgam spaces, and Brownian motions [J].
Benyi, Arpad ;
Oh, Tadahiro .
ADVANCES IN MATHEMATICS, 2011, 228 (05) :2943-2981
[4]   Strichartz estimates in Wiener amalgam spaces for the Schrodinger equation [J].
Cordero, Elena ;
Nicola, Fabio .
MATHEMATISCHE NACHRICHTEN, 2008, 281 (01) :25-41
[5]   Boundedness of Schrodinger Type Propagators on Modulation Spaces [J].
Cordero, Elena ;
Nicola, Fabio .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2010, 16 (03) :311-339
[6]   Remarks on Fourier multipliers and applications to the wave equation [J].
Cordero, Elena ;
Nicola, Fabio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (02) :583-591
[7]  
Feichtinger H. G., 1983, MODULATION SPACES LO, P99
[8]  
Feichtinger H.G., 1981, Internat. Ser. Numer. Math., V60, P153
[9]   Fourier multipliers of classical modulation spaces [J].
Feichtinger, Hans G. ;
Narimani, Ghassem .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (03) :349-359
[10]   GENERALIZED AMALGAMS, WITH APPLICATIONS TO FOURIER-TRANSFORM [J].
FEICHTINGER, HG .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (03) :395-409