The global Cauchy problems for the nonlinear dispersive equations on modulation spaces

被引:9
作者
Kato, Tomoya [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan
关键词
Decay estimates; Nonlinear dispersive equation; Modulation spaces; Cauchy problem; SCHRODINGER; DECOMPOSITION;
D O I
10.1016/j.jmaa.2013.12.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss decay estimates and Strichartz estimates for dispersive equations with non-homogeneous symbols on modulation spaces M-p,q(s) to obtain the global well-posedness of the Cauchy problems for nonlinear dispersive equations. As a result, we have a generalization of the result in [19] which treated the Schrodinger equations with a nonlinearity of wider class. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:821 / 840
页数:20
相关论文
共 21 条
  • [1] [Anonymous], THESIS
  • [2] [Anonymous], 2010, Theory of Function Spaces
  • [3] THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS
    CAZENAVE, T
    WEISSLER, FB
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) : 807 - 836
  • [4] Asymptotically self-similar global solutions of the nonlinear Schrodinger and heat equations
    Cazenave, T
    Weissler, FB
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (01) : 83 - 120
  • [5] CAZENAVE T, 1989, LECT NOTES MATH, V1394, P18
  • [6] Cazenave T, 2003, Semilinear Schrodinger Equations
  • [7] FEICHTINGER H. G., 2003, Wavelets and their applications, P99
  • [8] Feichtinger HG, 1983, TECHNICAL REPORT
  • [9] Decay estimates for a class of wave equations
    Guo, Zihua
    Peng, Lizhong
    Wang, Baoxiang
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (06) : 1642 - 1660
  • [10] KATO T, 1987, ANN I H POINCARE-PHY, V46, P113