Uneven batch data alignment with application to the control of batch end-product quality

被引:17
作者
Wan, Jian [1 ]
Marjanovic, Ognjen [1 ]
Lennox, Barry [1 ]
机构
[1] Univ Manchester, Sch Elect & Elect Engn, Control Syst Ctr, Manchester, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Variable batch lengths; Alignment; Partial least squares; Principal component analysis; End-product quality control; STATISTICAL PROCESS-CONTROL; LATENT VARIABLE MPC; TRAJECTORY TRACKING; MULTIVARIATE SPC; MISSING DATA; PLS; FERMENTATION; PREDICTION;
D O I
10.1016/j.isatra.2013.12.020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Batch processes are commonly characterized by uneven trajectories due to the existence of batch-to-batch variations. The batch end-product quality is usually measured at the end of these uneven trajectories. It is necessary to align the time differences for both the measured trajectories and the batch end-product quality in order to implement statistical process monitoring and control schemes. Apart from synchronizing trajectories with variable lengths using an indicator variable or dynamic time warping, this paper proposes a novel approach to align uneven batch data by identifying short-window PCA&PLS models at first and then applying these identified models to extend shorter trajectories and predict future batch end-product quality. Furthermore, uneven batch data can also be aligned to be a specified batch length using moving window estimation. The proposed approach and its application to the control of batch end-product quality are demonstrated with a simulated example of fed-batch fermentation for penicillin production. (C) 2013 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:584 / 590
页数:7
相关论文
共 32 条
[1]   Dealing with missing data in MSPC: several methods, different interpretations, some examples [J].
Arteaga, F ;
Ferrer, A .
JOURNAL OF CHEMOMETRICS, 2002, 16 (8-10) :408-418
[2]   A modular simulation package for fed-batch fermentation:: penicillin production [J].
Birol, G ;
Ündey, C ;
Çinar, A .
COMPUTERS & CHEMICAL ENGINEERING, 2002, 26 (11) :1553-1565
[3]   Multivariate SPC for startups and grade transitions [J].
Duchesne, C ;
Kourti, T ;
MacGregor, JF .
AICHE JOURNAL, 2002, 48 (12) :2890-2901
[4]   Control of batch product quality by trajectory manipulation using latent variable models [J].
Flores-Cerrillo, J ;
MacGregor, JF .
JOURNAL OF PROCESS CONTROL, 2004, 14 (05) :539-553
[5]   Latent variable MPC for trajectory tracking in batch processes [J].
Flores-Cerrillo, J ;
MacGregor, JF .
JOURNAL OF PROCESS CONTROL, 2005, 15 (06) :651-663
[6]   Real-time alignment of batch process data using COW for on-line process monitoring [J].
Fransson, Magnus ;
Folestad, Staffan .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2006, 84 (1-2) :56-61
[7]   Supervision of bioprocesses using a dynamic time warping algorithm [J].
Gollmer, K ;
Posten, C .
CONTROL ENGINEERING PRACTICE, 1996, 4 (09) :1287-1295
[8]   Latent Variable Model Predictive Control (LV-MPC) for trajectory tracking in batch processes [J].
Golshan, Masoud ;
MacGregor, John F. ;
Bruwer, Mark-John ;
Mhaskar, Prashant .
JOURNAL OF PROCESS CONTROL, 2010, 20 (04) :538-550
[9]   Latent Variable MPC for Trajectory Tracking in Batch Processes: Role of the model structure [J].
Golshan, Masoud ;
MacGregor, John F. ;
Bruwer, Mark-John ;
Mhaskar, Prashant .
2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, :4779-+
[10]   Real-time synchronization of batch trajectories for on-line multivariate statistical process control using Dynamic Time Warping [J].
Gonzalez-Martinez, J. M. ;
Ferrer, A. ;
Westerhuis, J. A. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 105 (02) :195-206