Identification of Suppressors of mbk-2/DYRK by Whole-Genome Sequencing

被引:12
作者
Wang, Yuemeng [1 ]
Wang, Jennifer T. [1 ]
Rasoloson, Dominique [1 ]
Stitzel, Michael L. [1 ]
O' Connell, Kevin F. [2 ]
Smith, Harold E. [2 ]
Seydoux, Geraldine [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Mol Biol & Genet, Baltimore, MD 21205 USA
[2] NIDDK, NIH, Bethesda, MD 20892 USA
来源
G3-GENES GENOMES GENETICS | 2014年 / 4卷 / 02期
基金
美国国家卫生研究院;
关键词
whole-genome sequencing; single nucleotide polymorphism mapping; suppressors; DYRK kinase; MBK-2; C; elegans; TO-EMBRYO TRANSITION; CAENORHABDITIS-ELEGANS; C.-ELEGANS; KINASE; DEGRADATION; ASYMMETRY; SEGREGATION; CHROMOSOME; ACTIVATION; REGULATORS;
D O I
10.1534/g3.113.009126
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Screening for suppressor mutations is a powerful method to isolate genes that function in a common pathway or process. Because suppressor mutations often do not have phenotypes on their own, cloning of suppressor loci can be challenging. A method combining whole-genome sequencing (WGS) and single nucleotide polymorphism (SNP) mapping (WGS/SNP mapping) was developed to identify mutations with visible phenotypes in C. elegans. We show here that WGS/SNP mapping is an efficient method to map suppressor mutations without the need for previous phenotypic characterization. Using RNA-mediated interference to test candidate loci identified by WGS/SNP mapping, we identified 10 extragenic and six intragenic suppressors of mbk-2, a DYRK family kinase required for the transition from oocyte to zygote. Remarkably, seven suppressors are mutations in cell-cycle regulators that extend the timing of the oocyte-to-zygote transition.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 44 条
  • [1] Depletion of the co-chaperone CDC-37 reveals two modes of PAR-6 cortical association in C-elegans embryos
    Beers, Melissa
    Kemphues, Kenneth
    [J]. DEVELOPMENT, 2006, 133 (19): : 3745 - 3754
  • [2] BRENNER S, 1974, GENETICS, V77, P71
  • [3] PLK-1 asymmetry contributes to asynchronous cell division of C. elegans embryos
    Budirahardja, Yemima
    Goenczy, Pierre
    [J]. DEVELOPMENT, 2008, 135 (07): : 1303 - 1313
  • [4] Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination
    Chen, Changchun
    Fenk, Lorenz A.
    de Bono, Mario
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (20) : e193
  • [5] Regulation of MBK-2/DYRK by CDK-1 and the Pseudophosphatases EGG-4 and EGG-5 during the Oocyte-to-Embryo Transition
    Cheng, Ken Chih-Chien
    Klancer, Richard
    Singson, Andrew
    Seydoux, Geraldine
    [J]. CELL, 2009, 139 (03) : 560 - 572
  • [6] Transgene-Free Genome Editing in Caenorhabditis elegans Using CRISPR-Cas
    Chiu, Hui
    Schwartz, Hillel T.
    Antoshechkin, Igor
    Sternberg, Paul W.
    [J]. GENETICS, 2013, 195 (03): : 1167 - 1171
  • [7] Davis ES, 2002, GENETICS, V160, P805
  • [8] Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination
    Dickinson, Daniel J.
    Ward, Jordan D.
    Reiner, David J.
    Goldstein, Bob
    [J]. NATURE METHODS, 2013, 10 (10) : 1028 - +
  • [9] C. elegans Mutant Identification with a One-Step Whole-Genome-Sequencing and SNP Mapping Strategy
    Doitsidou, Maria
    Poole, Richard J.
    Sarin, Sumeet
    Bigelow, Henry
    Hobert, Oliver
    [J]. PLOS ONE, 2010, 5 (11):
  • [10] Systematic genetic interaction screens uncover cell polarity regulators and functional redundancy
    Fievet, Bruno Thomas
    Rodriguez, Josana
    Naganathan, Sundar
    Lee, Christine
    Zeiser, Eva
    Ishidate, Takao
    Shirayama, Masaki
    Grill, Stephan
    Ahringer, Julie
    [J]. NATURE CELL BIOLOGY, 2013, 15 (01) : 103 - U229