808 nm high-power laser grown by MBE through the control of Be diffusion and use of superlattice

被引:1
作者
Zhu, DH
Wang, ZG
Liang, JB
Xu, B
Zhu, ZP
Zhang, J
Gong, Q
Li, SY
机构
[1] Lab. of Semiconduct. Mat. Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
关键词
high-power; semiconductor laser; MBE; quantum well;
D O I
10.1016/S0022-0248(96)01018-4
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
808 nm high-power laser diodes are gown by MBE. In the laser structure, the combination of Si-doped GRIN (graded-index) region adjacent to n-AlGaAs cladding layer with reduced Be doping concentration near the active region has been used to diminish Be diffusion and oxygen incorporation. As compared with the laser structure which has undoped GRIN region and uniform doping concentration for Si and Be, respectively, in the cladding layers, the slope efficiency has increased by about 8%. Typical threshold current density of 300 A/cm(2) and the minimum threshold current density of 220 A/cm(2) for lasers with 500 mu m cavity length are obtained. A high slope efficiency of 1.3 W/A for coated lasers with 1000 mu m cavity length is also demonstrated, Recorded CW output power at room temperature has reached 2.3 W.
引用
收藏
页码:1004 / 1008
页数:5
相关论文
共 50 条
  • [31] Mid-infrared High-power Quantum Cascade Laser Grown by MOCVD
    Yang P.
    Li M.
    Sun Y.
    Cheng F.
    Zhai S.
    Liu F.
    Zhang J.
    Faguang Xuebao/Chinese Journal of Luminescence, 2024, 45 (05): : 794 - 799
  • [32] 980 NM AND 1480 NM HIGH-POWER LASER MODULES FOR ER-DOPED FIBER AMPLIFIERS
    KASUKAWA, A
    OHKUBO, M
    NAMEGAYA, T
    IJICHI, T
    IKEGAMI, Y
    TSUKIJI, N
    NAMIKI, S
    SHIRASAKA, Y
    OPTOELECTRONICS-DEVICES AND TECHNOLOGIES, 1994, 9 (02): : 219 - 230
  • [33] Design and Fabrication of High-Efficiency and High-Power 976 nm Semiconductor Laser Chips
    Peng, Fu
    Zhang, Yanchun
    Tao, Zhao
    Zhao, Yongming
    Song, Tang
    Ying, Li
    Han, Shendan
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (07):
  • [34] High efficiency, high power 808-nm laser array and stacked arrays optimized for elevated temperature operation
    Crump, PA
    Crum, TR
    DeVito, M
    Farmer, J
    Grimshaw, M
    Huang, Z
    Igl, SA
    Macomber, S
    Thiagarajan, P
    Wise, D
    HIGH-POWER DIODE LASER TECHNOLOGY AND APPLICATIONS II, 2004, 5336 : 144 - 155
  • [35] Aging Mechanisms of Broad Area High-Power ∼800nm Laser Diodes
    McVay, E.
    Deri, R. J.
    Li, J.
    Baxamusa, S.
    Fenwick, W. E.
    Boisselle, M. C.
    Mittelberger, D.
    Varley, J.
    Swertfeger, R. B.
    Gilmore, L.
    Crowley, M.
    Thiagarajan, P.
    Song, J.
    Thaler, G.
    Schuck, C.
    Dusty, A.
    HIGH-POWER DIODE LASER TECHNOLOGY XXII, 2024, 12867
  • [36] High-power operation and lateral divergence angle reduction of broad-area laser diodes at 976 nm
    Liu, Yuxian
    Yang, Guowen
    Wang, Zhenfu
    Li, Te
    Tang, Song
    Zhao, Yuliang
    Lan, Yu
    Demir, Abdullah
    OPTICS AND LASER TECHNOLOGY, 2021, 141
  • [37] High-Power 1120-nm Yb-Doped Fiber Laser and Amplifier
    Zhang, Hanwei
    Xiao, Hu
    Zhou, Pu
    Wang, Xiaolin
    Xu, Xiaojun
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (21) : 2093 - 2096
  • [38] Life Prediction of 808nm High Power Semiconductor Laser by Accelerated Life Test of Constant Current Stress
    Yao Nan
    Li Wei
    Zhao Yihao
    Zhong Li
    Liu Suping
    Ma Xiaoyu
    AOPC 2015: ADVANCES IN LASER TECHNOLOGY AND APPLICATIONS, 2015, 9671
  • [39] RELIABILITY OF 780-NM HIGH-POWER LASER-DIODES WITH THIN QUANTUM-WELL ACTIVE LAYER
    NAKATSUKA, S
    YAMASHITA, S
    UCHIDA, K
    KAJIMURA, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1991, 30 (03): : 493 - 498
  • [40] Pulsed laser module based on a high-power semiconductor laser for the spectral range 1500-1600 nm
    Bobretsova, Yu K.
    Veselov, D. A.
    Voronkova, N. V.
    Slipchenko, S. O.
    Strelets, V. A.
    Bogdanovich, M., V
    Shpak, P., V
    Ladugin, M. A.
    Marmalyuk, A. A.
    Pikhtin, N. A.
    QUANTUM ELECTRONICS, 2019, 49 (05) : 488 - 492