On Effective Scheduling of Model-based Reinforcement Learning

被引:0
|
作者
Lai, Hang [1 ]
Shen, Jian [1 ]
Zhang, Weinan [1 ]
Huang, Yimin [2 ]
Zhang, Xing [2 ]
Tang, Ruiming [2 ]
Yu, Yong [1 ]
Li, Zhenguo [2 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] Huawei Noahs Ark Lab, Montreal, PQ, Canada
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021) | 2021年 / 34卷
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Model-based reinforcement learning has attracted wide attention due to its superior sample efficiency. Despite its impressive success so far, it is still unclear how to appropriately schedule the important hyperparameters to achieve adequate performance, such as the real data ratio for policy optimization in Dyna-style model-based algorithms. In this paper, we first theoretically analyze the role of real data in policy training, which suggests that gradually increasing the ratio of real data yields better performance. Inspired by the analysis, we propose a framework named AutoMBPO to automatically schedule the real data ratio as well as other hyperparameters in training model-based policy optimization (MBPO) algorithm, a representative running case of model-based methods. On several continuous control tasks, the MBPO instance trained with hyperparameters scheduled by AutoMBPO can significantly surpass the original one, and the real data ratio schedule found by AutoMBPO shows consistency with our theoretical analysis.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Model-Based Reinforcement Learning Method for Microgrid Optimization Scheduling
    Yao, Jinke
    Xu, Jiachen
    Zhang, Ning
    Guan, Yajuan
    SUSTAINABILITY, 2023, 15 (12)
  • [2] Model-based Reinforcement Learning: A Survey
    Moerland, Thomas M.
    Broekens, Joost
    Plaat, Aske
    Jonker, Catholijn M.
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2023, 16 (01): : 1 - 118
  • [3] A survey on model-based reinforcement learning
    Fan-Ming LUO
    Tian XU
    Hang LAI
    Xiong-Hui CHEN
    Weinan ZHANG
    Yang YU
    Science China(Information Sciences), 2024, 67 (02) : 59 - 84
  • [4] Nonparametric model-based reinforcement learning
    Atkeson, CG
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 1008 - 1014
  • [5] The ubiquity of model-based reinforcement learning
    Doll, Bradley B.
    Simon, Dylan A.
    Daw, Nathaniel D.
    CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (06) : 1075 - 1081
  • [6] Multiple model-based reinforcement learning
    Doya, K
    Samejima, K
    Katagiri, K
    Kawato, M
    NEURAL COMPUTATION, 2002, 14 (06) : 1347 - 1369
  • [7] A survey on model-based reinforcement learning
    Luo, Fan-Ming
    Xu, Tian
    Lai, Hang
    Chen, Xiong-Hui
    Zhang, Weinan
    Yu, Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (02)
  • [8] Learning to Paint With Model-based Deep Reinforcement Learning
    Huang, Zhewei
    Heng, Wen
    Zhou, Shuchang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8708 - 8717
  • [9] Incremental model-based reinforcement learning with model constraint
    Yang, Zhiyou
    Fu, Mingsheng
    Qu, Hong
    Li, Fan
    Shi, Shuqing
    Hu, Wang
    NEURAL NETWORKS, 2025, 185
  • [10] Objective Mismatch in Model-based Reinforcement Learning
    Lambert, Nathan
    Amos, Brandon
    Yadan, Omry
    Calandra, Roberto
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 761 - 770