A spatial-temporal graph neural network framework for automated software bug triaging

被引:13
|
作者
Wu, Hongrun [1 ]
Ma, Yutao [2 ]
Xiang, Zhenglong [1 ,3 ]
Yang, Chen [4 ]
He, Keqing [2 ]
机构
[1] Minnan Normal Univ, Sch Phys & Informat Engn, Key Lab Intelligent Optimizat & Informat Proc, Zhangzhou 363000, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[4] IBO Technol Shenzhen Co Ltd, Shenzhen 212000, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural network; Representation learning; Bug triage; Random walk; Attention;
D O I
10.1016/j.knosys.2022.108308
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The bug triaging process, an essential process of assigning bug reports to the most appropriate developers, is related closely to the quality and costs of software development. Since manual bug assignment is a labor-intensive task, especially for large-scale software projects, many machine learning-based approaches have been proposed to triage bug reports automatically. Although developer collaboration networks (DCNs) are dynamic and evolving in the real world, most automated bug triaging approaches focus on static tossing graphs at a single time slice. Also, none of the previous studies consider periodic interactions among developers. To address the problems mentioned above, in this article, we propose a novel spatial-temporal dynamic graph neural network (ST-DGNN) framework, including a joint random walk (JRWalk) mechanism and a graph recurrent convolutional neural network (GRCNN) model. In particular, JRWalk aims to sample topological structures in a developer collaboration network with two sampling strategies by considering both developer reputation and interaction preference. GRCNN has three components with the same structure, i.e., hourly-periodic, daily-periodic, and weekly-periodic components, to learn the spatial-temporal features of nodes on dynamic DCNs. We evaluated our approach's effectiveness by comparing it with several state-of-the-art graph representation learning methods in three domain-specific tasks (i.e., the bug fixer prediction task and two downstream tasks of graph representation learning: node classification and link prediction). In the three tasks, experiments on two real-world, large-scale developer collaboration networks collected from the Eclipse and Mozilla projects indicate that the proposed approach outperforms all the baseline methods on three different time scales (i.e., long-term, medium-term, and short-term predictions) in terms of F1-score. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] DynGCN: A Dynamic Graph Convolutional Network Based on Spatial-Temporal Modeling
    Li, Jing
    Liu, Yu
    Zou, Lei
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2020, PT I, 2020, 12342 : 83 - 95
  • [32] STGRN: A Spatial-Temporal Graph Resonance Network for Social Connection Inference
    Min, Shengjie
    Peng, Jing
    Luo, Guangchun
    Gao, Zhan
    Fang, Bo
    Rao, Dingyuan
    2021 THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2021), 2021, : 48 - 53
  • [33] Developer Activity Motivated Bug Triaging: Via Convolutional Neural Network
    Shikai Guo
    Xinyi Zhang
    Xi Yang
    Rong Chen
    Chen Guo
    Hui Li
    Tingting Li
    Neural Processing Letters, 2020, 51 : 2589 - 2606
  • [34] Spatial-temporal graph neural network traffic prediction based load balancing with reinforcement learning in cellular networks
    Liu, Shang
    He, Miao
    Wu, Zhiqiang
    Lu, Peng
    Gu, Weixi
    INFORMATION FUSION, 2024, 103
  • [35] Developer Activity Motivated Bug Triaging: Via Convolutional Neural Network
    Guo, Shikai
    Zhang, Xinyi
    Yang, Xi
    Chen, Rong
    Guo, Chen
    Li, Hui
    Li, Tingting
    NEURAL PROCESSING LETTERS, 2020, 51 (03) : 2589 - 2606
  • [36] Spatial-temporal correlated graph neural networks based on neighborhood feature selection for traffic data prediction
    Yang, Jiale
    Xie, Fei
    Yang, Jiquan
    Shi, Jianjun
    Zhao, Jing
    Zhang, Rui
    APPLIED INTELLIGENCE, 2023, 53 (04) : 4717 - 4732
  • [37] A Novel Spatial-Temporal Deep Neural Network for Electricity Price Forecasting
    Cheng, Xu
    Ilieva, Iliana
    Bremdal, Bernt
    Redhu, Surender
    Ottesen, Stig Odegaard
    2023 3RD INTERNATIONAL CONFERENCE ON APPLIED ARTIFICIAL INTELLIGENCE, ICAPAI, 2023, : 9 - 14
  • [38] Power load forecasting based on spatial-temporal fusion graph convolution network
    Jiang, He
    Dong, Yawei
    Dong, Yao
    Wang, Jianzhou
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2024, 204
  • [39] An Automatic Method Using Hybrid Neural Networks and Attention Mechanism for Software Bug Triaging
    Liu Y.
    Huang J.
    Ma Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2020, 57 (03): : 461 - 473
  • [40] Concurrent Transformer for Spatial-Temporal Graph Modeling
    Xie, Yi
    Xiong, Yun
    Zhu, Yangyong
    Yu, Philip S.
    Jin, Cheng
    Wang, Qiang
    Li, Haihong
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT III, 2022, : 314 - 321