A spatial-temporal graph neural network framework for automated software bug triaging

被引:13
|
作者
Wu, Hongrun [1 ]
Ma, Yutao [2 ]
Xiang, Zhenglong [1 ,3 ]
Yang, Chen [4 ]
He, Keqing [2 ]
机构
[1] Minnan Normal Univ, Sch Phys & Informat Engn, Key Lab Intelligent Optimizat & Informat Proc, Zhangzhou 363000, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[4] IBO Technol Shenzhen Co Ltd, Shenzhen 212000, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural network; Representation learning; Bug triage; Random walk; Attention;
D O I
10.1016/j.knosys.2022.108308
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The bug triaging process, an essential process of assigning bug reports to the most appropriate developers, is related closely to the quality and costs of software development. Since manual bug assignment is a labor-intensive task, especially for large-scale software projects, many machine learning-based approaches have been proposed to triage bug reports automatically. Although developer collaboration networks (DCNs) are dynamic and evolving in the real world, most automated bug triaging approaches focus on static tossing graphs at a single time slice. Also, none of the previous studies consider periodic interactions among developers. To address the problems mentioned above, in this article, we propose a novel spatial-temporal dynamic graph neural network (ST-DGNN) framework, including a joint random walk (JRWalk) mechanism and a graph recurrent convolutional neural network (GRCNN) model. In particular, JRWalk aims to sample topological structures in a developer collaboration network with two sampling strategies by considering both developer reputation and interaction preference. GRCNN has three components with the same structure, i.e., hourly-periodic, daily-periodic, and weekly-periodic components, to learn the spatial-temporal features of nodes on dynamic DCNs. We evaluated our approach's effectiveness by comparing it with several state-of-the-art graph representation learning methods in three domain-specific tasks (i.e., the bug fixer prediction task and two downstream tasks of graph representation learning: node classification and link prediction). In the three tasks, experiments on two real-world, large-scale developer collaboration networks collected from the Eclipse and Mozilla projects indicate that the proposed approach outperforms all the baseline methods on three different time scales (i.e., long-term, medium-term, and short-term predictions) in terms of F1-score. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Multi-view Cascading Spatial-Temporal Graph Neural Network for Traffic Flow Forecasting
    Liu, Zibo
    Fu, Kaiqun
    Liu, Xiaotong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 605 - 616
  • [12] Spatial-Temporal Graph Neural Network for Traffic Flow Prediction Based on Information Enhanced Transmission
    Ni Q.
    Peng W.
    Zhang Z.
    Zhai Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (02): : 282 - 293
  • [13] Multi-View Spatial-Temporal Graph Neural Network for Traffic Prediction
    Li, He
    Jin, Duo
    Li, XueJiao
    Huang, HongJie
    Yun, JinPeng
    Huang, LongJi
    COMPUTER JOURNAL, 2023, 66 (10) : 2393 - 2408
  • [14] Spatial-Temporal Multiscale Fusion Graph Neural Network for Traffic Flow Prediction
    Hou, Hongxin
    Ning, Nianwen
    Shi, Huaguang
    Zhou, Yi
    2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 272 - 277
  • [15] Physics-informed graph neural network for spatial-temporal production forecasting
    Liu, Wendi
    Pyrcz, Michael J.
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 223
  • [16] Adaptive Hybrid Spatial-Temporal Graph Neural Network for Cellular Traffic Prediction
    Wang, Xing
    Yang, Kexin
    Wang, Zhendong
    Feng, Junlan
    Zhu, Lin
    Zhao, Juan
    Deng, Chao
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4026 - 4032
  • [17] Short-term load forecasting using spatial-temporal embedding graph neural network
    Wei, Chuyuan
    Pi, Dechang
    Ping, Mingtian
    Zhang, Haopeng
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 225
  • [18] STEGNN: Spatial-Temporal Embedding Graph Neural Networks for Road Network Forecasting
    Si, Jiaqi
    Gan, Xinbiao
    Xiao, Tiaojie
    Yang, Bo
    Dong, Dezun
    Pang, Zhengbin
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 826 - 834
  • [19] Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues
    Khac-Hoai Nam Bui
    Jiho Cho
    Hongsuk Yi
    Applied Intelligence, 2022, 52 : 2763 - 2774
  • [20] Based Matrix Fusion Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
    Jing, Xin
    Zhu, Hai
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1171 - 1175