A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains

被引:3
作者
Chen, Xu [1 ]
Deng, Si-Wen [1 ]
Lei, Siu-Long [1 ]
机构
[1] Univ Macau, Dept Math, Macau, Peoples R China
关键词
Space-fractional diffusion equation; Block-circulant-circulant-block matrix; Preconditioner; Finite volume method; Convex domain; 65N08; 65N85; 65F08; 65T50; 35R11; FINITE-ELEMENT-METHOD; CIRCULANT PRECONDITIONER; ITERATIVE METHODS; VOLUME METHOD; DISPERSION; APPROXIMATION; TIMES;
D O I
10.1007/s10915-019-00966-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Preconditioners are popularly used for speeding up Krylov subspace iterative method for solving linear systems from discretization of fractional differential equations (FDEs) on rectangular domains. Though some recent works have been developed for FDEs in general convex domains, it still has room for improvement in the design of preconditioner. For this sake, in this paper, we theoretically study the preconditioner problem for two-dimensional conservative space-fractional diffusion equations with variable coefficients and propose a robust preconditioner with penalty term which can deal with any convex domains significantly. We further prove that the proposed preconditioner equals to the coefficient matrix plus a low rank matrix and a matrix with small norm under certain conditions. It implies that the new preconditioner can effectively accelerate the convergence rate of Krylov subspace method. Experimental results show the good performance of the robust preconditioner.
引用
收藏
页码:1033 / 1057
页数:25
相关论文
共 39 条
[1]   Fractional-order anisotropic diffusion for image denoising [J].
Bai, Jian ;
Feng, Xiang-Chu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (10) :2492-2502
[2]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[3]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[4]   TOEPLITZ EQUATIONS BY CONJUGATE GRADIENTS WITH CIRCULANT PRECONDITIONER [J].
CHAN, RH ;
STRANG, G .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (01) :104-119
[5]   A fast numerical method for two-dimensional Riesz space fractional diffusion equations on a convex bounded region [J].
Chen, S. ;
Liu, F. ;
Turner, I ;
Anh, V .
APPLIED NUMERICAL MATHEMATICS, 2018, 134 :66-80
[6]   Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation [J].
Ervin, Vincent J. ;
Heuer, Norbert ;
Roop, John Paul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) :572-591
[7]   The Unstructured Mesh Finite Element Method for the Two-Dimensional Multi-term Time-Space Fractional Diffusion-Wave Equation on an Irregular Convex Domain [J].
Fan, Wenping ;
Jiang, Xiaoyun ;
Liu, Fawang ;
Anh, Vo .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) :27-52
[8]   A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain [J].
Fan, Wenping ;
Liu, Fawang .
APPLIED MATHEMATICS LETTERS, 2018, 77 :114-121
[9]   A finite element solution for the fractional advection-dispersion equation [J].
Huang, Quanzhong ;
Huang, Guanhua ;
Zhan, Hongbin .
ADVANCES IN WATER RESOURCES, 2008, 31 (12) :1578-1589
[10]   A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains [J].
Jia, Jinhong ;
Wang, Hong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) :2031-2043