Adaptive Impedance Control for an Upper Limb Robotic Exoskeleton Using Biological Signals

被引:275
作者
Li, Zhijun [1 ]
Huang, Zhicong [1 ]
He, Wei [2 ]
Su, Chun-Yi [1 ,3 ]
机构
[1] South China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[3] Concordia Univ, Dept Mech & Ind Engn, Montreal, PQ H4B 1R6, Canada
基金
中国国家自然科学基金;
关键词
Adaptive impedance control; high-gain observer; neural networks; robotic exoskeleton; TRACKING CONTROL; MUSCLE; ARM; MANIPULATOR; STIFFNESS; MODEL;
D O I
10.1109/TIE.2016.2538741
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents adaptive impedance control of an upper limb robotic exoskeleton using biological signals. First, we develop a reference musculoskeletal model of the human upper limb and experimentally calibrate the model to match the operator's motion behavior. Then, the proposed novel impedance algorithm transfers stiffness from human operator through the surface electromyography (sEMG) signals, being utilized to design the optimal reference impedance model. Considering the unknown deadzone effects in the robot joints and the absence of the precise knowledge of the robot's dynamics, an adaptive neural network control incorporating with a high-gain observer is developed to approximate the deadzone effect and robot's dynamics and drive the robot tracking desired trajectories without velocity measurements. In order to verify the robustness of the proposed approach, the actual implementation has been performed using a real robotic exoskeleton and a human operator.
引用
收藏
页码:1664 / 1674
页数:11
相关论文
共 34 条
[1]  
Ajoudani A., 2011, 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), P216, DOI 10.1109/ROBIO.2011.6181288
[2]   Tele-impedance: Teleoperation with impedance regulation using a body-machine interface [J].
Ajoudani, Arash ;
Tsagarakis, Nikos ;
Bicchi, Antonio .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2012, 31 (13) :1642-1655
[3]   DETERMINATION OF MUSCLE ORIENTATIONS AND MOMENT ARMS [J].
AN, KN ;
TAKAHASHI, K ;
HARRIGAN, TP ;
CHAO, EY .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1984, 106 (03) :280-282
[4]   ROBUST OUTPUT TRACKING FOR NONLINEAR-SYSTEMS [J].
BEHTASH, S .
INTERNATIONAL JOURNAL OF CONTROL, 1990, 51 (06) :1381-1407
[5]   Stability and motor adaptation in human arm movements [J].
Burdet, E ;
Tee, KP ;
Mareels, I ;
Milner, TE ;
Chew, CM ;
Franklin, DW ;
Osu, R ;
Kawato, M .
BIOLOGICAL CYBERNETICS, 2006, 94 (01) :20-32
[6]  
Burdet E., 2014, Experimental Robotics, P331
[7]   Intelligent tracking control of a dual-arm wheeled mobile manipulator with dynamic uncertainties [J].
Cheng, Meng-Bi ;
Su, Wu-Chung ;
Tsai, Ching-Chih ;
Thang Nguyen .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2013, 23 (08) :839-857
[8]  
Ding QC, 2011, IEEE SYS MAN CYBERN, P2891, DOI 10.1109/ICSMC.2011.6084104
[9]   A human-exoskeleton interface utilizing electromyography [J].
Fleischer, Christian ;
Hommel, Guenter .
IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (04) :872-882
[10]  
Ge S. S., 1998, ADAPTIVE NEURAL NETW