Experimental research of reciprocating oscillatory gas-liquid two-phase flow

被引:15
|
作者
Zhu Hairong [1 ]
Duan Junfa [2 ]
Cui Haiting [1 ]
Liu Qinggang [1 ]
Yu Xinqi [1 ]
机构
[1] Hebei Univ Sci & Technol, Sch Mech Engn, Shijiazhuang 050018, Hebei, Peoples R China
[2] North China Univ Water Resources & Elect Power, Sch Mech Engn, Zhengzhou 450045, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Oscillatory heat transfer; Gas-liquid two-phase flow; Flow characteristics; Oscillation frequency; Water filling ratio;
D O I
10.1016/j.ijheatmasstransfer.2019.06.037
中图分类号
O414.1 [热力学];
学科分类号
摘要
Piston cooling effect is one of the key factors affecting the reliability of internal combustion engine. In order to investigate the influence of oscillatory flow structure of engine oil in the cooling oil gallery of piston on the heat transfer enhancement, and to reveal the oscillatory heat transfer mechanism of gas-liquid two-phase flow, the oscillatory flow structure of gas-liquid two-phase flow in the simplified rectangular cavity was obtained by high-speed photography technology. The effects of oscillatory structure of two - phase flow on average heat transfer coefficient of wall surface at different oscillation frequencies and water filling ratios were analyzed, and the effects of different oscillation frequencies and water filling ratios on maximum bubble diameter and mixing ratio were also studied. Results show that oscillation frequency is the primary factor influencing the oscillatory heat transfer effect of gas-liquid two-phase flow, the higher the oscillation frequency, the higher the average heat transfer coefficient of wall surface. The average heat transfer coefficient of wall surface will decrease if the water filling ratio is extra large or small, which is the highest at water filling ratio of 40%-60%. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:931 / 939
页数:9
相关论文
共 50 条
  • [41] Experimental study and numerical model of gas-liquid two-phase flow in aeration tank
    Cheng, Wen
    Song, Ce
    Zhou, Xiao-De
    Shuili Xuebao/Journal of Hydraulic Engineering, 2001, (12):
  • [42] Description of phase separation motion in gas-liquid two-phase flow
    Wu, Xitong
    Li, Chenhao
    Luo, Xingqi
    Feng, Jianjun
    Wang, Like
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 181
  • [43] Experimental study on leakage characteristics of gas-liquid two-phase flow in a horizontal pipe
    Meng, Jia
    Liang, Fachun
    He, Zhennan
    Zhao, Jingwen
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 184 : 881 - 896
  • [44] Numerical simulation and experimental investigation of gas-liquid two-phase flow in a complex microchannel
    Zheng, Chen
    Zhang, Mindi
    Qiu, Sicong
    Li, Hansheng
    Wang, Tian
    Wang, Hanwei
    CHEMICAL ENGINEERING SCIENCE, 2021, 230
  • [45] Phase distribution in horizontal gas-liquid two-phase bubbly flow
    SUN Kexia
    ZHANG Mingyuan
    CHEN Xuejun (Xi’an Jiaotong University
    NuclearScienceandTechniques, 1999, (03) : 184 - 189
  • [46] Experimental Study of gas-liquid two-phase flow affected by wall surface wettability
    Takamasa, T.
    Hazuku, T.
    Hibiki, T.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2008, 29 (06) : 1593 - 1602
  • [47] DETAILED EXPERIMENTAL CHARACTERISATION OF GAS-LIQUID TWO-PHASE SLUG FLOW IN HORIZONTAL PIPES
    do Amaral, Carlos E. F.
    Castillo, Fernando
    da Silva, Marco Jose
    Santos, Eduardo N.
    Morales, Rigoberto E. M.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 7, PTS A-D, 2013, : 2495 - 2501
  • [48] Experimental and modeling study on gas-liquid two-phase transient flow in viscoelastic pipes
    Zhu Y.
    Wu C.
    Yuan Y.
    Shi Z.
    Wu, Chenguang (wu.cg@126.com), 2018, Harbin Institute of Technology (50): : 89 - 93and172
  • [49] Experimental and modeling studies for gas-liquid two-phase flow at high pressure conditions
    Abduvayt, P
    Arihara, N
    Manabe, R
    Ikeda, K
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2003, 46 (02) : 111 - 125
  • [50] Numerical Simulation and Experimental Study of Gas-liquid Two-phase Flow in a Centrifugal Pump
    Su, Xiaobin
    Xu, Qiang
    Yang, Chenyu
    Dai, Xiaoyu
    Guo, Liejin
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (08): : 2396 - 2402