Experimental research of reciprocating oscillatory gas-liquid two-phase flow

被引:15
|
作者
Zhu Hairong [1 ]
Duan Junfa [2 ]
Cui Haiting [1 ]
Liu Qinggang [1 ]
Yu Xinqi [1 ]
机构
[1] Hebei Univ Sci & Technol, Sch Mech Engn, Shijiazhuang 050018, Hebei, Peoples R China
[2] North China Univ Water Resources & Elect Power, Sch Mech Engn, Zhengzhou 450045, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Oscillatory heat transfer; Gas-liquid two-phase flow; Flow characteristics; Oscillation frequency; Water filling ratio;
D O I
10.1016/j.ijheatmasstransfer.2019.06.037
中图分类号
O414.1 [热力学];
学科分类号
摘要
Piston cooling effect is one of the key factors affecting the reliability of internal combustion engine. In order to investigate the influence of oscillatory flow structure of engine oil in the cooling oil gallery of piston on the heat transfer enhancement, and to reveal the oscillatory heat transfer mechanism of gas-liquid two-phase flow, the oscillatory flow structure of gas-liquid two-phase flow in the simplified rectangular cavity was obtained by high-speed photography technology. The effects of oscillatory structure of two - phase flow on average heat transfer coefficient of wall surface at different oscillation frequencies and water filling ratios were analyzed, and the effects of different oscillation frequencies and water filling ratios on maximum bubble diameter and mixing ratio were also studied. Results show that oscillation frequency is the primary factor influencing the oscillatory heat transfer effect of gas-liquid two-phase flow, the higher the oscillation frequency, the higher the average heat transfer coefficient of wall surface. The average heat transfer coefficient of wall surface will decrease if the water filling ratio is extra large or small, which is the highest at water filling ratio of 40%-60%. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:931 / 939
页数:9
相关论文
共 50 条
  • [21] Gas-liquid two-phase flow in meandering microchannels
    Fries, Donata A.
    Waelchli, Severin
    Von Rohr, Philipp Rudolf
    CHEMICAL ENGINEERING JOURNAL, 2008, 135 : S37 - S45
  • [22] An experimental investigation of gas-liquid two-phase flow in single microchannel contactors
    Yue, Jun
    Luo, Lingai
    Gonthier, Yves
    Chen, Guangwen
    Yuan, Quan
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (16) : 4189 - 4202
  • [23] Numerical Simulations for Gas-Liquid Two-Phase Flow
    Matsumoto, Junichi
    Takada, Naoki
    JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 2010, 55 (06) : 387 - 393
  • [24] Theoretical and experimental investigation for developing a gas-liquid two-phase flow meter
    Monachan, Binet
    Thomas, Rijo Jacob
    Skaria, Mathew
    Shafi, K. A.
    Emmanuel, B.
    Kasthurirengan, S.
    Sahu, A. K.
    Dave, Haresh
    FLOW MEASUREMENT AND INSTRUMENTATION, 2022, 83
  • [25] Experimental studies on insulation properties of gas-liquid two-phase flow system
    Yan, P
    Yao, LX
    Zhou, YX
    Sun, GS
    2002 ANNUAL REPORT CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA, 2002, : 534 - 537
  • [26] TWO-PHASE GAS-LIQUID FLOW IN PIPE LINES
    FARADY, L
    MATOLCSY, K
    UJHIDY, A
    BABOS, B
    INTERNATIONAL CHEMICAL ENGINEERING, 1965, 5 (02): : 263 - &
  • [27] Numerical simulations for gas-liquid two-phase flow
    Matsumoto, Junichi
    Takada, Naoki
    Toraibarojisuto/Journal of Japanese Society of Tribologists, 2010, 55 (06): : 387 - 393
  • [28] On gas-liquid two-phase flow regimes in microchannels
    Akbar, MK
    Plummer, DA
    Ghiaasiaan, SM
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2003, 29 (05) : 855 - 865
  • [29] Experimental and numerical investigation of gas-liquid metal two-phase flow pumping
    Rosettani, Josh
    Ahmed, Wael
    Geddis, Philip
    Wu, Lijun
    Clements, Bruce
    Ahmed, Wael (ahmedw@uoguelph.ca), 1600, Elsevier B.V. (10):
  • [30] Experimental study on the characteristics of gas-liquid metal two-phase flow in pool
    Mou, Zhuoya
    Zhu, Longxiang
    Ouyang, Yong
    Zhang, Hong
    Wan, Lingfeng
    Zhang, Luteng
    Tang, Simiao
    Pan, Liangming
    CHEMICAL ENGINEERING SCIENCE, 2025, 307