Variational asymptotic homogenization of beam-like square lattice structures

被引:29
作者
Barchiesi, Emilio [1 ]
Khakalo, Sergei [2 ,3 ]
机构
[1] Univ Roma La Sapienza, Rome, Italy
[2] Aalto Univ, Espoo, Finland
[3] VTT Tech Res Ctr Finland, Espoo, Finland
基金
芬兰科学院;
关键词
Variational asymptotic homogenization; beam-like square lattice structures; Timoshenko beam; multiscale description; Piola's ansatz; DOUBLE-POROSITY HOMOGENIZATION; IN-SITU EXPERIMENTS; LARGE DEFORMATIONS; STRAIN GRADIENT; PANTOGRAPHIC SHEETS; EXISTING BUILDINGS; SEISMIC ANALYSIS; ELASTICITY; MODELS; DYNAMICS;
D O I
10.1177/1081286519843155
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By means of variational asymptotic homogenization, using Piola's meso-macro ansatz, we derive the linear Timoshenko beam as the macro-scale limit of a meso-scale beam-like periodic planar square lattice structure. By considering benchmarks in statics and dynamics, meso-to-macro convergence is numerically analyzed. At the finest micro-scale, a 2D assembly of elastic, geometrically linear, isotropic and homogeneous Cauchy continua in plane strain with different material parameters is considered. Using this description, we calibrate the meso-scale model using standard methodology and, by exploiting the meso-to-macro homogenization scaling laws, we recover bending and shear Timoshenko beam moduli. It turns out that the Timoshenko beam found in this way and the finest-scale description based on the Cauchy continuum are in excellent agreement.
引用
收藏
页码:3295 / 3318
页数:24
相关论文
共 52 条
[1]   Theory and computation of higher gradient elasticity theories based on action principles [J].
Abali, B. Emek ;
Mueller, Wolfgang H. ;
dell'Isola, Francesco .
ARCHIVE OF APPLIED MECHANICS, 2017, 87 (09) :1495-1510
[2]  
Abali B. Emek, 2015, MECH ADV MAT MODERN, V1, P1, DOI DOI 10.1186/S40759-015-0004-3
[3]   STRAIN GRADIENT AND GENERALIZED CONTINUA OBTAINED BY HOMOGENIZING FRAME LATTICES [J].
Abdoul-Anziz, Houssam ;
Seppecher, Pierre .
MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 2018, 6 (03) :213-250
[4]   Truss modular beams with deformation energy depending on higher displacement gradients [J].
Alibert, JJ ;
Seppecher, P ;
Dell'Isola, F .
MATHEMATICS AND MECHANICS OF SOLIDS, 2003, 8 (01) :51-73
[5]  
Altenbach H, COURSES LECT, V541, P179
[6]   A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams [J].
Andreaus, Ugo ;
Spagnuolo, Mario ;
Lekszycki, Tomasz ;
Eugster, Simon R. .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2018, 30 (05) :1103-1123
[7]  
[Anonymous], 2014, COMPLETE WORKS G PIO
[8]  
[Anonymous], 1988, Applied Mechanics Reviews, DOI [DOI 10.1115/1.3151907, 10.1115/1.3151907]
[9]   Mechanical metamaterials: a state of the art [J].
Barchiesi, Emilio ;
Spagnuolo, Mario ;
Placidi, Luca .
MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (01) :212-234
[10]   Large deformations of 1D microstructured systems modeled as generalized Timoshenko beams [J].
Battista, A. ;
Della Corte, A. ;
dell'Isola, F. ;
Seppecher, P. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03)