Symmetric ground state solutions of m-coupled nonlinear Schrodinger equations

被引:15
作者
Hajaiej, Hichem [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
关键词
Schrodinger equations; Ground state; Cauchy problem; STANDING WAVES; SOLITARY WAVES; FIELD-EQUATIONS; EXISTENCE; PROPAGATION; BIFURCATION; SOLITONS; SYSTEM;
D O I
10.1016/j.na.2009.03.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of radial and radially decreasing ground states of an m-coupled nonlinear Schrodinger equation with a general nonlinearity. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4696 / 4704
页数:9
相关论文
共 50 条
  • [41] QUASILINEAR SCHRODINGER EQUATIONS: GROUND STATE AND INFINITELY MANY NORMALIZED SOLUTIONS
    Li, Houwang
    Zou, Wenming
    PACIFIC JOURNAL OF MATHEMATICS, 2023, 322 (01) : 99 - 138
  • [42] Normalized Ground State Solutions of Nonlinear Schrodinger Equations Involving Exponential Critical Growth
    Chang, Xiaojun
    Liu, Manting
    Yan, Duokui
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)
  • [43] New classes of solutions in the coupled PT symmetric nonlocal nonlinear Schrodinger equations with four wave mixing
    Vinayagam, P. S.
    Radha, R.
    Al Khawaja, U.
    Ling, Liming
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 387 - 395
  • [44] A minimal energy tracking method for non-radially symmetric solutions of coupled nonlinear Schrodinger equations
    Kuo, Yueh-Cheng
    Lin, Wen-Wei
    Shieh, Shih-Feng
    Wang, Weichung
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (21) : 7941 - 7956
  • [45] LONG TIME DYNAMICS OF NONRADIAL SOLUTIONS TO INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATIONS
    Van Duong Dinh
    Keraani, Sahbi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (04) : 4765 - 4811
  • [46] Multiple nontrivial solutions for a class of nonlinear Schrodinger equations with linear coupling
    Wang, Jun
    Feng, Zhaosheng
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2017, 14 (02) : 159 - 200
  • [47] Existence of ground state for coupled system of biharmonic Schrodinger equations
    Wang, Yanhua
    Liu, Min
    Wei, Gongming
    AIMS MATHEMATICS, 2022, 7 (03): : 3719 - 3730
  • [48] Positive ground state of coupled planar systems of nonlinear Schrodinger equations with critical exponential growth
    Chen, Jing
    Zhang, Xinghua
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (48) : 1 - 23
  • [49] BLOW-UP SOLUTIONS OF TWO-COUPLED NONLINEAR SCHRODINGER EQUATIONS IN THE RADIAL CASE
    Bai, Qianqian
    Li, Xiaoguang
    Zhang, Li
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (04) : 1852 - 1864
  • [50] Superposition principle and composite solutions to coupled nonlinear Schrodinger equations
    Al Sakkaf, Laila
    Al Khawaja, Usama
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) : 10168 - 10189