Finite Element Model Analysis of Nanopaper Enabled Composite Materials

被引:0
作者
Zhang, Aying [1 ]
Li, Zhenghong [2 ]
机构
[1] Harbin Univ, Harbin 150086, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Harbin 150001, Heilongjiang, Peoples R China
来源
2018 INTERNATIONAL CONFERENCE ON ZOOLOGY, BOTANY AND ECOLOGY (ICZBE 2018) | 2019年
关键词
Finite Element; Thermal Property; Nanopaper; Composites; THERMAL-CONDUCTIVITY;
D O I
10.25236/iczbe.2018.011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The software PROE 5.0 is used for 3D modeling of composites reinforced by pulse bending nanopaper. And the modeling process of composites reinforced by pulse bending nanopaper is described in detail. The finite element software FLUENT is used to analyze the temperature difference of the maximum and minimum temperature of composites reinforced by pulse bending nanopaper with calculation area. The temperature distribution of the nanocomposites is more uniform with the increase of the bending cycles of nanopaper. The heat source of the unit volume of the nanopaper changes with the calculated area under the same total heating power. The more the bending period of the nanopaper, the smaller the heat source of the unit volume. At the same time, with the increase of calculation area, the heat dissipation area of polymer matrix material per unit volume decreases. The average heat flux distribution on the outer surface of nanocomposites under different heating power decrease as the bending cycles increase.
引用
收藏
页码:52 / 55
页数:4
相关论文
共 10 条
[1]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[2]   Architecting Three-Dimensional Networks in Carbon Nanotube Buckypapers for Thermal Interface Materials [J].
Chen, Hongyuan ;
Chen, Minghai ;
Di, Jiangtao ;
Xu, Geng ;
Li, Hongbo ;
Li, Qingwen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (06) :3903-3909
[3]   Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites [J].
Clancy, Thomas C. ;
Gates, Thomas S. .
POLYMER, 2006, 47 (16) :5990-5996
[4]   Quantized phonon spectrum of single-wall carbon nanotubes [J].
Hone, J ;
Batlogg, B ;
Benes, Z ;
Johnson, AT ;
Fischer, JE .
SCIENCE, 2000, 289 (5485) :1730-1733
[5]   Thermal transport measurements of individual multiwalled nanotubes [J].
Kim, P ;
Shi, L ;
Majumdar, A ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :215502-1
[6]  
Lau K. T., 2002, COMPOSITES B, V4, P263
[7]   Multichannel ballistic transport in multiwall carbon nanotubes [J].
Li, HJ ;
Lu, WG ;
Li, JJ ;
Bai, XD ;
Gu, CZ .
PHYSICAL REVIEW LETTERS, 2005, 95 (08)
[8]   Temperature dependence of the thermal conductivity of single-wall carbon nanotubes [J].
Osman, MA ;
Srivastava, D .
NANOTECHNOLOGY, 2001, 12 (01) :21-24
[9]   MECHANICAL AND THERMAL-PROPERTIES OF CARBON NANOTUBES [J].
RUOFF, RS ;
LORENTS, DC .
CARBON, 1995, 33 (07) :925-930
[10]   Advances in the science and technology of carbon nanotubes and their composites: a review [J].
Thostenson, ET ;
Ren, ZF ;
Chou, TW .
COMPOSITES SCIENCE AND TECHNOLOGY, 2001, 61 (13) :1899-1912