Indistinguishability of percolation clusters

被引:61
作者
Lyons, R [1 ]
Schramm, O
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
基金
美国国家科学基金会;
关键词
finite energy; Cayley graph; group; Kazhdan; wreath product; uniqueness; connectivity; transitive; nonamenable;
D O I
10.1214/aop/1022874816
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that when percolation produces infinitely many infinite dusters on a Cayley graph, one cannot distinguish the clusters from each other by any invariantly defined property. This implies that uniqueness of the infinite cluster is equivalent to nondecay of connectivity (a.k.a. long-range order). We then derive applications concerning uniqueness in Kazhdan groups and in wreath products and inequalities for p(u).
引用
收藏
页码:1809 / 1836
页数:28
相关论文
共 31 条
[1]   UNIQUENESS OF THE INFINITE CLUSTER AND CONTINUITY OF CONNECTIVITY FUNCTIONS FOR SHORT AND LONG-RANGE PERCOLATION [J].
AIZENMAN, M ;
KESTEN, H ;
NEWMAN, CM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 111 (04) :505-531
[2]   TREE GRAPH INEQUALITIES AND CRITICAL-BEHAVIOR IN PERCOLATION MODELS [J].
AIZENMAN, M ;
NEWMAN, CM .
JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (1-2) :107-143
[3]   SIMULTANEOUS UNIQ(H)UENESS OF INFINITE CLUSTERS IN STATIONARY RANDOM LABELED GRAPHS [J].
ALEXANDER, KS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (01) :39-55
[4]   Cut sets and normed cohomology with applications to percolation [J].
Babson, E ;
Benjamini, I .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) :589-597
[5]  
Baumslag G., 1961, MATH Z, V75, P22, DOI DOI 10.1007/BF01211007
[6]   Group-invariant percolation on graphs [J].
Benjamini, I ;
Lyons, R ;
Peres, Y ;
Schramm, O .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (01) :29-66
[7]  
Benjamini I, 1998, ANN PROBAB, V26, P1198
[8]  
Benjamini I, 1999, SYM MATH, V39, P56
[9]  
Benjamini I., 1996, Electron. Comm. Probab, V1, P71
[10]   DENSITY AND UNIQUENESS IN PERCOLATION [J].
BURTON, RM ;
KEANE, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :501-505