Heteroclinic switching between chimeras

被引:37
作者
Bick, Christian [1 ,2 ,3 ]
机构
[1] Univ Oxford, Oxford Ctr Ind & Appl Math, Math Inst, Oxford OX2 6GG, England
[2] Univ Exeter, Dept Math, Exeter EX4 4QF, Devon, England
[3] Univ Exeter, Ctr Syst Dynam & Control, Exeter EX4 4QF, Devon, England
关键词
COUPLED PHASE OSCILLATORS; NETWORK DYNAMICS; STATES; NEUROSCIENCE; COEXISTENCE; SYSTEMS; BRAIN;
D O I
10.1103/PhysRevE.97.050201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Functional oscillator networks, such as neuronal networks in the brain, exhibit switching between metastable states involving many oscillators. We give exact results how such global dynamics can arise in paradigmatic phase oscillator networks: Higher-order network interactions give rise to metastable chimeras-localized frequency synchrony patterns-which are joined by heteroclinic connections. Moreover, we illuminate the mechanisms that underly the switching dynamics in these experimentally accessible networks.
引用
收藏
页数:5
相关论文
共 45 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]  
[Anonymous], 2002, PROGR MATH
[3]   THE DYNAMICS OF N-WEAKLY COUPLED IDENTICAL OSCILLATORS [J].
ASHWIN, P ;
SWIFT, JW .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) :69-108
[4]   Nonlinear dynamics - When instability makes sense [J].
Ashwin, P ;
Timme, M .
NATURE, 2005, 436 (7047) :36-37
[5]   Hopf normal form with SN symmetry and reduction to systems of nonlinearly coupled phase oscillators [J].
Ashwin, Peter ;
Rodrigues, Ana .
PHYSICA D-NONLINEAR PHENOMENA, 2016, 325 :14-24
[6]   Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience [J].
Ashwin, Peter ;
Coombes, Stephen ;
Nicks, Rachel .
JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2016, 6 :1-92
[7]   Weak chimeras in minimal networks of coupled phase oscillators [J].
Ashwin, Peter ;
Burylko, Oleksandr .
CHAOS, 2015, 25 (01)
[8]   On designing heteroclinic networks from graphs [J].
Ashwin, Peter ;
Postlethwaite, Claire .
PHYSICA D-NONLINEAR PHENOMENA, 2013, 265 :26-39
[9]  
Bick C., HETEROCLINIC C UNPUB
[10]   Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions [J].
Bick, Christian ;
Sebek, Michael ;
Kiss, Istvan Z. .
PHYSICAL REVIEW LETTERS, 2017, 119 (16)