CYCLICITY OF SOME LIENARD SYSTEMS

被引:10
作者
Li, Na [1 ,2 ]
Han, Maoan [1 ]
Romanovski, Valery G. [1 ,3 ,4 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Shanghai Univ Engn Sci, Coll Fundamental Studies, Shanghai 201620, Peoples R China
[3] Univ Maribor, Ctr Appl Math & Theoret Phys, SI-2000 Maribor, Slovenia
[4] Univ Maribor, Fac Nat Sci & Math, SI-2000 Maribor, Slovenia
基金
中国国家自然科学基金;
关键词
Limit cycle; cyclicity; Lienard system; AMPLITUDE LIMIT-CYCLES; GLOBAL BIFURCATION; CUBIC SYSTEMS; NUMBER; FAMILY;
D O I
10.3934/cpaa.2015.14.2127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lienard system and its generalizations are important models of nonlinear oscillators. We study small-amplitude limit cycles of two families of Lienard systems and find exact number of such limit cycles bifurcating from a center or focus at the origin for these families, thus obtaining the precise bound for cyclicity of the families.
引用
收藏
页码:2127 / 2150
页数:24
相关论文
共 39 条
[1]  
Andronov A. A., 1973, THEORY BIFURCATIONS
[2]  
Bautin N.N., 1952, MAT SB, V30, P181
[3]   THE NUMBER OF SMALL-AMPLITUDE LIMIT-CYCLES OF LIENARD EQUATIONS [J].
BLOWS, TR ;
LLOYD, NG .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 95 (MAR) :359-366
[4]   Limit cycles of a perturbed cubic polynomial differential center [J].
Buica, Adriana ;
Llibre, Jaume .
CHAOS SOLITONS & FRACTALS, 2007, 32 (03) :1059-1069
[5]  
Cherkas L.A., 1976, Differential Equations, V12, P292
[6]   BIFURCATION OF CRITICAL PERIODS FOR PLANE VECTOR-FIELDS [J].
CHICONE, C ;
JACOBS, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 312 (02) :433-486
[7]  
Christopher C, 2005, TRENDS MATH, P23
[8]   Configurations of limit cycles in Lienard equations [J].
Coll, B. ;
Dumortier, F. ;
Prohens, R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) :4169-4184
[9]   More limit cycles than expected in Lienard equations [J].
Dumortier, Freddy ;
Panazzolo, Daniel ;
Roussarie, Robert .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (06) :1895-1904
[10]   Center conditions and cyclicity for a family of cubic systems: Computer algebra approach [J].
Fercec, Brigita ;
Mahdi, Adam .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2013, 87 :55-67