Building sandwich-like carbon coated Si@CNTs composites as high-performance anode materials for lithium-ion batteries

被引:36
|
作者
Xiao, Wei [1 ,2 ,3 ]
Qiu, Yinjie [1 ,2 ,3 ]
Xu, Quan [1 ,2 ,3 ]
Wang, Jingjing [1 ,2 ,3 ]
Xie, Chong [1 ,2 ,3 ]
Peng, Jianhong [4 ]
Hu, Junhua [5 ]
Zhang, Jiujun [1 ,2 ,3 ,6 ]
Li, Xifei [1 ,2 ,3 ]
机构
[1] Xian Univ Technol, Xian Key Lab New Energy Mat & Devices, Inst Adv Electrochem Energy, Xian, Shaanxi, Peoples R China
[2] Xian Univ Technol, Sch Mat Sci & Engn, Xian, Shaanxi, Peoples R China
[3] Shaanxi Int Joint Res Ctr Surface Technol Energy, Xian, Shaanxi, Peoples R China
[4] Qinghai Nationalities Univ, Sch Phys & Elect Informat Engn, Xining, Peoples R China
[5] Zhengzhou Univ, State Ctr Int Cooperat Designer Lowcarbon & Envir, Zhengzhou, Peoples R China
[6] Shanghai Univ, Inst Sustainable Energy, Shanghai, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Lithium-ion batteries; Si anode; Carbon nanotubes; Carbon coating; Sandwich structure; SILICON HOLLOW NANOSPHERES; GRAPHENE-ENCAPSULATED SI; ENERGY-STORAGE; C COMPOSITE; CAPACITY; NANOPARTICLES; STABILITY; DESIGN; HYBRID; ARCHITECTURE;
D O I
10.1016/j.electacta.2020.137278
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The naturally abundant and environmentally friendly silicon (Si) with a high theoretical capacity has emerged as a promising anode material for lithium-ion batteries. However, its huge volume change upon lithiation/delithiation has destructed the structural integrity and stability, while the poor electronic/ionic conductivities have severely diminished the reaction kinetics, leading to a poor electrochemical performance of Si anode. To circumvent these challenges, the Si nanoparticles have been initially grown on CNTs through a magnesiothermic reduction of SiO2 and rationally coated by amorphous carbon via a carbonization of phenolic resin. Specifically, the carbon coating, which would not only suppress the structural collapse of Si in large volumetric variation upon cycling, but also facilitate the migrations of electrons and ions, was found to determine the electrochemical reversibility and durability of C@Si@CNTs composites. Benefitted from the significantly improved structural stability and reaction kinetics, the sandwich-like coaxial C@Si@CNTs with a desirable carbon coating would exhibit a highly stable reversible capacity of 496 mAh g(-1) with a 76.8% capacity retention over 800 cycles at a current density of 500 mA g(-1) and maintain a large reversible capacity of 551 mAh g(-1) at a current density of 2000 mA g(-1). This novel construction of C@Si@CNTs sandwich nanostructure would contribute to the research development of highly stable and durable silicon anode materials for high-energy and long-life lithium-ion batteries. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Layer-by-layer Assembled Sandwich-Like Carbon Nanotubes/Graphene Oxide Composite as High-Performance Electrodes for Lithium-Ion Batteries
    Wang, Song-Can
    Yang, Juan
    Zhou, Xiang-Yang
    Li, Jie
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2013, 8 (07): : 9692 - 9703
  • [42] Copper-Iron Selenides Nanoflakes and Carbon Nanotubes Composites as an Advanced Anode Material for High-Performance Lithium-Ion Batteries
    Liu, Yixin
    Sahoo, Gopinath
    Kim, Eun Mi
    Jeong, Sang Mun
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2024, 5 (07):
  • [43] Construction of the peanut-like Co3O4 as anode materials for high-performance lithium-ion batteries
    Dai, Yu
    Fang, Xing
    Yang, Ting
    Wang, Wenlei
    IONICS, 2020, 26 (03) : 1261 - 1265
  • [44] Improving the electrochemical performance of Si anode by using N-doped carbon materials in lithium-ion batteries
    Xiong, Xiaolong
    Jiao, Shupeng
    Ma, Haiying
    IONICS, 2022, 28 (02) : 683 - 687
  • [45] Synthesis of cage-like silicon/carbon microspheres and their high-rate performance anode materials for lithium-ion batteries
    Chen, Yueqian
    He, Yong
    Xiang, Kaixiong
    Chen, Han
    Liu, Zhulin
    VACUUM, 2019, 168
  • [46] Effective carbon constraint of MnS nanoparticles as high-performance anode of lithium-ion batteries
    Camacho, Ramon A. Paredes
    Wu, Ai-Min
    Jin, Xiao-Zhe
    Dong, Xu-Feng
    Li, Xiao-Na
    Huang, Hao
    JOURNAL OF POWER SOURCES, 2019, 437
  • [47] Magnetic tubular carbon nanofibers as anode electrodes for high-performance lithium-ion batteries
    Yu Huyan
    Wang, Jiqi
    Chen, Junjie
    Zhang, Qiuyu
    Zhang, Baoliang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (14) : 8242 - 8256
  • [48] High-performance amorphous carbon-graphene nanocomposite anode for lithium-ion batteries
    Qiu, Jingxia
    Lai, Chao
    Li, Sheng
    Zhang, Shanqing
    RSC ADVANCES, 2014, 4 (36): : 18899 - 18903
  • [49] Fabrication of high-performance silicon anode materials for lithium-ion batteries by the impurity compensation doping method
    Liu, Yang
    Su, Zhiqin
    Wang, Yong
    Shui, Jiaxin
    Jin, Zhengfei
    Bai, Bing
    Qiu, Linlin
    Du, Pingfan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (04) : 969 - 976
  • [50] Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries
    Hassan, M. F.
    Guo, Z. P.
    Chen, Z.
    Liu, H. K.
    JOURNAL OF POWER SOURCES, 2010, 195 (08) : 2372 - 2376