Construction of Position-Controllable Graphene Bubbles in Liquid Nitrogen with Assistance of Low-Power Laser

被引:11
作者
Zhang, Xin [1 ]
Zhang, Haojie [2 ]
Cao, Shiwei [3 ]
Zhang, Ning [4 ]
Jin, Bo [1 ]
Zong, Zewen [1 ]
Li, Zhan [1 ]
Chen, Ximeng [1 ]
机构
[1] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China
[2] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
[3] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
[4] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
liquid nitrogen; laser; graphene bubbles; molecular dynamics; position controllable; GAS-TRANSPORT; NANOBUBBLES; DYNAMICS; INTERFACES;
D O I
10.1021/acsami.0c14857
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene bubbles (GBs) are of significant interest owing to their distinguished electrical, optical, and magnetic properties. GBs can also serve as high-pressure reaction vessels to numerous chemical reactions. However, previous strategies to produce GBs are relatively elaborate and random. Therefore, their potential applications are severely restricted. Here, a facile and effective protocol is proposed to construct position-controllable GBs in liquid nitrogen (LN) with the assistance of laser and graphene wrinkles. Specifically, a film of graphene mounted on a SiO2 substrate (G@SiO2) is subjected to irradiation by a low-power laser in LN and then many GBs emerge from the surface of G@SiO2. Most impressively, the domain where GBs arise is the position of the laser beam spot. Hence, we demonstrated that the high collimation of laser facilitates the position definition of GBs. The microscopic results indicate that some GBs split into three parts when they were subjected to irradiation by an electron. Meanwhile, some GBs degenerate into pores with a diameter of 500 nm when they are exposed to air. To grasp the properties of GBs in depth, the molecular dynamics (MD) simulations are performed, and the corresponding results indicate that temperature has very little impact on the GBs' shape. A phase transition process of the substance inside GBs is also revealed. Moreover, a two-dimensional (2D) solid nitrogen is discovered by MD simulations. The simplicity of our protocol paves the way to engineer high-pressure microreaction vessels and fabricate porous graphene membranes.
引用
收藏
页码:56260 / 56268
页数:9
相关论文
共 39 条
[1]   Graphene Nanobubbles Produced by Water Splitting [J].
An, Hongjie ;
Tan, Beng Hau ;
Moo, James Guo Sheng ;
Liu, Sheng ;
Pumera, Martin ;
Ohl, Claus-Dieter .
NANO LETTERS, 2017, 17 (05) :2833-2838
[2]   Graphene Nanobubbles: A New Optical Nonlinear Material [J].
Bao, Qiaoliang ;
Chen, Jianqiang ;
Xiang, Yuanjiang ;
Zhang, Kai ;
Li, Shaojuan ;
Jiang, Xiaofang ;
Xu, Qing-Hua ;
Loh, Kian Ping ;
Venkatesan, T. .
ADVANCED OPTICAL MATERIALS, 2015, 3 (06) :744-749
[3]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[4]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Interface-Governed Deformation of Nanobubbles and Nanotents Formed by Two-Dimensional Materials [J].
Dai, Zhaohe ;
Hou, Yuan ;
Sanchez, Daniel A. ;
Wang, Guorui ;
Brennan, Christopher J. ;
Zhang, Zhong ;
Liu, Luqi ;
Lu, Nanshu .
PHYSICAL REVIEW LETTERS, 2018, 121 (26)
[7]   Structure and Gas Transport at the Polymer-Zeolite Interface: Insights from Molecular Dynamics Simulations [J].
Dutta, Ravi C. ;
Bhatia, Suresh K. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (06) :5992-6005
[8]   Ultraconfined Plasmonic Hotspots Inside Graphene Nanobubbles [J].
Fei, Z. ;
Foley, J. J. ;
Gannett, W. ;
Liu, M. K. ;
Dai, S. ;
Ni, G. X. ;
Zettl, A. ;
Fogler, M. M. ;
Wiederrecht, G. P. ;
Gray, S. K. ;
Basov, D. N. .
NANO LETTERS, 2016, 16 (12) :7842-7848
[9]   Graphene-Titanium Interfaces from Molecular Dynamics Simulations [J].
Fonseca, Alexandre F. ;
Liang, Tao ;
Zhang, Difan ;
Choudhary, Kamal ;
Phillpot, Simon R. ;
Sinnott, Susan B. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (38) :33288-33297
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191