An inverse probability weighted estimator for the bivariate distribution function under right censoring

被引:7
作者
Dai, Hongsheng [1 ]
Bao, Yanchun [2 ]
机构
[1] Univ Lancaster, Fylde Coll, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Univ Manchester, Manchester M13 9PL, Lancs, England
关键词
SURVIVOR FUNCTION ESTIMATION; NPMLE; MODEL;
D O I
10.1016/j.spl.2009.05.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An inverse probability weighted estimator is proposed for the joint distribution function of bivariate random vectors under right censoring. The new estimator is based on the idea of transformation of bivariate survival functions and bivariate random vectors to univariate survival functions and univariate random variables. The estimator converges weakly to a zero-mean Gaussian process with an easily estimated covariance function. Numerical studies show that the new estimator is more efficient than some existing inverse probability weighted estimators. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1789 / 1797
页数:9
相关论文
共 15 条
[1]   Estimation of bivariate and marginal distributions with censored data [J].
Akritas, MG ;
Van Keilegom, I .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :457-471
[2]  
[Anonymous], 1980, APPROXIMATION THEORE
[3]   ESTIMATION OF A BIVARIATE DISTRIBUTION FUNCTION UNDER RANDOM CENSORSHIP [J].
BURKE, MD .
BIOMETRIKA, 1988, 75 (02) :379-382
[4]  
CAMPBELL G, 1981, BIOMETRIKA, V68, P417, DOI 10.1093/biomet/68.2.417
[5]  
CAMPBELL G, 1982, C MATH SOC J BOLYAI, V32, P103
[6]  
CLAYTON DG, 1978, BIOMETRIKA, V65, P141, DOI 10.1093/biomet/65.1.141
[7]   KAPLAN-MEIER ESTIMATE ON THE PLANE [J].
DABROWSKA, DM .
ANNALS OF STATISTICS, 1988, 16 (04) :1475-1489
[8]  
LIN DY, 1993, BIOMETRIKA, V80, P573
[9]   THE PRODUCT-LIMIT ESTIMATOR AND THE BOOTSTRAP - SOME ASYMPTOTIC REPRESENTATIONS [J].
LO, SH ;
SINGH, K .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 71 (03) :455-465
[10]   An adjustment to improve the bivariate survivor function repaired NPMLE [J].
Moodie, FZ ;
Prentice, RL .
LIFETIME DATA ANALYSIS, 2005, 11 (03) :291-307