A theoretical model for calculating the energy characteristics of surfaces of InAs quantum dots in a GaAs(100) matrix is described. The model is based on notions of nonequilibrium thermodynamics and surface physics. The results of calculating the magnitudes of the surface energy and adhesion physical quantities as well as pressures in the vicinity of the edges of InAs quantum dots in a GaAs(100) matrix are presented. The causes of bending of the profile of the lower part of the quantum dot are presented using the Young relationship. These results can be used to asses the stress-relaxation mechanisms during the course of the selforganization of InAs quantum dots in a GaAs(100) matrix.