Elucidation of the Na2/3FePO4 and Li2/3FePO4 Intermediate Superstructure Revealing a Pseudouniform Ordering in 2D

被引:73
作者
Boucher, Florent [1 ,2 ]
Gaubicher, Joel [1 ,2 ]
Cuisinier, Marine [1 ]
Guyomard, Dominique [1 ,2 ]
Moreau, Philippe [1 ,2 ]
机构
[1] Univ Nantes, CNRS, Inst Mat Jean Rouxel IMN, UMR 6502, F-44322 Nantes 3, France
[2] CNRS, FR 3459, Reseau Stockage Electrochim Energie RS2E, F-80039 Amiens, France
关键词
AUGMENTED-WAVE METHOD; RECHARGEABLE LITHIUM BATTERIES; BOND-VALENCE PARAMETERS; ELECTRODE MATERIALS; PHASE-TRANSITION; MOSSBAUER SPECTROMETRY; ELECTROCHEMICAL-CELLS; AB-INITIO; LIFEPO4; SODIUM;
D O I
10.1021/ja503622y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Based on TEM, synchrotron X-ray diffraction, DFT calculations, and Mossbauer spectroscopy, a unified understanding of the Na and Li intercalation process in FePO4 is proposed. The key to this lies in solving the highly sought-after intermediate A(2/3)FePO(4) (A = Na, Li) superstructures that are characterized by alkali ions as well as Fe-II/Fe-III charge orderings in a monoclinic three-fold supercell. Formation energies and electrochemical potential calculations confirm that Na2/3FePO4 and Li2/3FePO4 are stable and metastable, respectively, and that they yield insertion potentials in fair agreement with experimental values. The 2/3 Na(Li) and 1/3 vacancy sublattice of the intermediate phases forms a dense (10 (1) over bar)(pnma) plane in which the atom/vacancy ordering is very similar to that predicted for the most uniform distribution of 1/3 of vacancies in a 2D square lattice. Structural analysis strongly suggests that the key role of this dense plane is to constrain the intercalation diffusion channels to operate by cooperative filling of (bc)(pnma.) From a practical point of view, this generalized mechanism highlights the fact that an interesting strategy for obtaining high-rate FePO4 materials would consist in designing grains with an enhanced (101) surface area, thereby offering potential for substantial improvements with respect to the performance of rechargeable Li and Na batteries.
引用
收藏
页码:9144 / 9157
页数:14
相关论文
共 64 条
  • [11] Shape control of inorganic materials via electrodeposition
    Choi, Kyoung-Shin
    [J]. DALTON TRANSACTIONS, 2008, (40) : 5432 - 5438
  • [12] The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1
    Delacourt, C
    Poizot, P
    Tarascon, JM
    Masquelier, C
    [J]. NATURE MATERIALS, 2005, 4 (03) : 254 - 260
  • [13] Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model
    Delmas, C.
    Maccario, M.
    Croguennec, L.
    Le Cras, F.
    Weill, F.
    [J]. NATURE MATERIALS, 2008, 7 (08) : 665 - 671
  • [14] Valence fluctuations of 57Fe in disordered Li0.6FePO4
    Dodd, J. L.
    Halevy, I.
    Fultz, B.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (04) : 1563 - 1566
  • [15] Phase diagram of LixFePO4
    Dodd, JL
    Yazami, R
    Fultz, B
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (03) : A151 - A155
  • [16] Dreyer W, 2010, NAT MATER, V9, P448, DOI [10.1038/nmat2730, 10.1038/NMAT2730]
  • [17] Small polaron hopping in LixFePO4 solid solutions:: Coupled lithium-ion and electron mobility
    Ellis, Brian
    Perry, Laura K.
    Ryan, Dominic H.
    Nazar, L. F.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (35) : 11416 - 11422
  • [18] Sodium and sodium-ion energy storage batteries
    Ellis, Brian L.
    Nazar, Linda F.
    [J]. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) : 168 - 177
  • [19] Electrochromism of LixFePO4 Induced by Intervalence Charge Transfer Transition
    Furutsuki, Sho
    Chung, Sai-Cheong
    Nishimura, Shin-ichi
    Kudo, Yusuke
    Yamashita, Koichi
    Yamada, Atsuo
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (29) : 15259 - 15264
  • [20] Abnormal operando structural behavior of sodium battery material: Influence of dynamic on phase diagram of Na FePO4
    Gaubicher, J.
    Boucher, F.
    Moreau, P.
    Cuisinier, M.
    Soudan, P.
    Elkaim, E.
    Guyomard, D.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2014, 38 : 104 - 106