Optimal Approximations of Coupling in Multidisciplinary Models

被引:6
作者
Baptista, Ricardo [1 ]
Marzouk, Youssef [2 ]
Willcox, Karen [2 ]
Peherstorfer, Benjamin [3 ]
机构
[1] MIT, Ctr Computat Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[3] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA
关键词
SEQUENTIAL MONTE-CARLO; DESIGN OPTIMIZATION; SYSTEM; DECOMPOSITION;
D O I
10.2514/1.J056888
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents a methodology for identifying important discipline couplings in multicomponent engineering systems. Coupling among disciplines contributes significantly to the computational cost of analyzing a system and can become particularly burdensome when coupled analyses are embedded within a design or optimization loop. In many cases, disciplines may be weakly coupled, so that some of the coupling or interaction terms can be neglected without significantly impacting the accuracy of the system output. Typical practice derives such approximations in an ad hoc manner using expert opinion and domain experience. This work proposes a new approach that formulates an optimization problem to find a model that optimally balances accuracy of the model outputs with the sparsity of the discipline couplings. An adaptive sequential Monte Carlo sampling-based technique is used to efficiently search the combinatorial model space of different discipline couplings. An algorithm for selecting an optimal model is presented and illustrated in a fire-detection satellite model and a turbine engine cycle analysis model.
引用
收藏
页码:2412 / 2428
页数:17
相关论文
共 43 条
[21]  
Jameson A., 1988, Journal of Scientific Computing, V3, P233, DOI 10.1007/BF01061285
[22]   Comparative studies of metamodelling techniques under multiple modelling criteria [J].
Jin, R ;
Chen, W ;
Simpson, TW .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2001, 23 (01) :1-13
[23]  
Keane AJ, 2005, COMPUTATIONAL APPROACHES FOR AEROSPACE DESIGN: THE PURSUIT OF EXCELLENCE, P1, DOI 10.1002/0470855487
[24]  
Keyes D., 2015, PRINCETON COMPANION, P335, DOI [10. 1515/9781400874477-006, DOI 10.1515/9781400874477-006]
[25]   Target cascading in optimal system design [J].
Kim, HM ;
Michelena, NF ;
Papalambros, PY ;
Jiang, T .
JOURNAL OF MECHANICAL DESIGN, 2003, 125 (03) :474-480
[26]  
Kroo Ilan., 1994, AIAAUSAFNASAISSMO S, P697
[27]   FIELD-SPLIT PRECONDITIONED INEXACT NEWTON ALGORITHMS [J].
Liu, Lulu ;
Keyes, David E. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03) :A1388-A1409
[28]  
Lu Z., 12 AIAA AV TECHN INT, DOI [10. 2514/6. 2012-5522, DOI 10.2514/6.2012-5522]
[29]  
Mahadevan S., 2000, PROBABILITY RELIABIL, P138, DOI [10. 1002/bate. 200002930, DOI 10.1002/BATE.200002930]
[30]   A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design [J].
Martins, Joaquim R. R. A. ;
Alonso, Juan J. ;
Reuther, James J. .
OPTIMIZATION AND ENGINEERING, 2005, 6 (01) :33-62