Riesz completions, functional representations, and anti-lattices

被引:8
作者
Kalauch, Anke [1 ]
Lemmens, Bas [2 ]
van Gaans, Onno [3 ]
机构
[1] Tech Univ Dresden, Inst Anal, FR Math, D-01062 Dresden, Germany
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT27NF, Kent, England
[3] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
关键词
Anti-lattice; Disjointness; Embedding; Functional representation; Partially ordered vector space; Riesz completion; Riesz homomorphism; SPACES; BANDS; SETS;
D O I
10.1007/s11117-013-0240-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Riesz completion of an Archimedean partially ordered vector space with unit can be represented as a norm dense Riesz subspace of the smallest functional representation of This yields a convenient way to find the Riesz completion. To illustrate the method, the Riesz completions of spaces ordered by Lorentz cones, cones of symmetric positive semi-definite matrices, and polyhedral cones are determined. We use the representation to analyse the existence of non-trivial disjoint elements and link the absence of such elements to the notion of anti-lattice. One of the results is a geometric condition on the dual cone of a finite dimensional partially ordered vector space that ensures that is an anti-lattice.
引用
收藏
页码:201 / 218
页数:18
相关论文
共 17 条
[1]  
ALFSEN EM, 1968, P LOND MATH SOC, V18, P385
[2]  
Aliprantis CD., 1985, Positive Operators
[3]   THE VECTOR LATTICE COVER OF CERTAIN PARTIALLY ORDERED-GROUPS [J].
BUSKES, G ;
VANROOIJ, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1993, 54 :352-367
[4]  
Dunford N., 1957, LINEAR OPERATORS 1
[5]  
Faraut J., 1994, Oxford Math. Monogr.
[6]  
Jameson G., 1970, LNM, V141
[7]  
Kadison R.V, 1951, MEM AM MATH SOC, V1951
[8]   ORDER PROPERTIES OF BOUNDED SELF-ADJOINT OPERATORS [J].
KADISON, RV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 2 (03) :505-510
[9]  
KAKUTANI S, 1941, ANN MATH, V42, P994
[10]  
Krein M, 1940, CR ACAD SCI URSS, V28, P13