DETECTING PERIODIC ORBITS IN SOME 3D CHAOTIC QUADRATIC POLYNOMIAL DIFFERENTIAL SYSTEMS

被引:5
作者
de Carvalho, Tiago [1 ]
Euzebio, Rodrigo Donizete [2 ]
Llibre, Jaume [3 ]
Tonon, Durval Jose [4 ]
机构
[1] UNESP, Dept Matemat, Fac Ciencias, BR-17033360 Bauru, SP, Brazil
[2] IMECC UNICAMP, Dept Matemat, BR-13083970 Campinas, SP, Brazil
[3] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[4] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2016年 / 21卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
Periodic solutions; averaging theory; quadratic polynomial differential system; chaotic systems; limit cycles; FLOWS;
D O I
10.3934/dcdsb.2016.21.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the averaging theory we study the periodic solutions and their linear stability of the 3-dimensional chaotic quadratic polynomial differential systems without equilibria studied in [3]. All these differential systems depend only on one-parameter.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 10 条
[1]  
[Anonymous], 2007, Appl. Math. Sci
[2]   PERIODIC SOLUTIONS OF EL NINO MODEL THROUGH THE VALLIS DIFFERENTIAL SYSTEM [J].
Euzebio, Rodrigo Donizete ;
Llibre, Jaume .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) :3455-3469
[3]   Simple chaotic flows with a line equilibrium [J].
Jafari, Sajad ;
Sprott, J. C. .
CHAOS SOLITONS & FRACTALS, 2013, 57 :79-84
[4]   Elementary quadratic chaotic flows with no equilibria [J].
Jafari, Sajad ;
Sprott, J. C. ;
Golpayegani, S. Mohammad Reza Hashemi .
PHYSICS LETTERS A, 2013, 377 (09) :699-702
[5]   Non-ergodicity of Nose-Hoover dynamics [J].
Legoll, Frederic ;
Luskin, Mitchell ;
Moeckel, Richard .
NONLINEARITY, 2009, 22 (07) :1673-1694
[6]   Integrability of the Nose-Hoover equation [J].
Mandi, Adam ;
Valls, Claudia .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (08) :1348-1352
[7]   SOME SIMPLE CHAOTIC FLOWS [J].
SPROTT, JC .
PHYSICAL REVIEW E, 1994, 50 (02) :R647-R650
[8]   Some third-order ordinary differential equations [J].
Swinnerton-Dyer, Peter ;
Wagenknecht, Thomas .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 :725-748
[9]  
Verhulst F, 1996, Nonlinear Differential Equations and Dynamical Systems
[10]   Constructing a Novel No-Equilibrium Chaotic System [J].
Viet-Thanh Pham ;
Volos, Christos ;
Jafari, Sajad ;
Wei, Zhouchao ;
Wang, Xiong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (05)