Retinex based Underwater Image Enhancement using Attenuation Compensated Color Balance and Gamma Correction

被引:2
作者
Xu, Shuai [1 ]
Zhang, Jian [1 ]
Bo, Liling [2 ]
Li, Hongran [1 ]
Zhang, Heng [2 ]
Zhong, Zhaoman [1 ]
Yuan, Dongqing [2 ]
机构
[1] Jiangsu Ocean Univ, Sch Comp Engn, Lianyungang, Peoples R China
[2] Jiangsu Ocean Univ, Sch Math, Lianyungang, Peoples R China
来源
INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND ROBOTICS 2021 | 2021年 / 11884卷
关键词
Underwater image enhancement; Retinex; Color balance; Image processing;
D O I
10.1117/12.2605023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Underwater image is an important carrier of marine information. However, the problems of low contrast, color degradation, uneven illumination and detail loss cause the degradation of image quality. In this paper, we design a novel underwater image enhancement pipeline based on retinex. Firstly, we use bilateral filter instead of the traditional gaussian filter to estimate illumination image and obtain the reflectance image. Then, we design an attenuation map guided gray world method to overcome color distortion and use gamma correction to improve the illumination image. Finally, the fusion image is post-processed to further improve the contrast and obtain the final enhanced image. Qualitative and quantitative performance analysis prove that the proposed method has better performance than other underwater image enhancement methods.
引用
收藏
页数:14
相关论文
共 35 条
  • [1] Ancuti C. O., 2017, 2017 IEEE C COMP VIS
  • [2] Color Balance and Fusion for Underwater Image Enhancement
    Ancuti, Codruta O.
    Ancuti, Cosmin
    De Vleeschouwer, Christophe
    Bekaert, Philippe
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) : 379 - 393
  • [3] Ancuti C, 2012, PROC CVPR IEEE, P81, DOI 10.1109/CVPR.2012.6247661
  • [4] A SPATIAL PROCESSOR MODEL FOR OBJECT COLOR-PERCEPTION
    BUCHSBAUM, G
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1980, 310 (01): : 1 - 26
  • [5] Transmission Estimation in Underwater Single Images
    Drews-, P., Jr.
    do Nascimento, E.
    Moraes, F.
    Botelho, S.
    Campos, M.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, : 825 - 830
  • [6] Fabbri C., 2018, ARXIV
  • [7] Fu XY, 2014, IEEE IMAGE PROC, P4572, DOI 10.1109/ICIP.2014.7025927
  • [8] Automatic Red-Channel underwater image restoration
    Galdran, Adrian
    Pardo, David
    Picon, Artzai
    Alvarez-Gila, Aitor
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 26 : 132 - 145
  • [9] Gao G., 2019, INFORM SCIENCES, V506
  • [10] Constructing multilayer locality-constrained matrix regression framework for noise robust face super-resolution
    Gao, Guangwei
    Yu, Yi
    Xie, Jin
    Yang, Jian
    Yang, Meng
    Zhang, Jian
    [J]. PATTERN RECOGNITION, 2021, 110 (110)