Resolving the Effects of Maternal and Offspring Genotype on Dyadic Outcomes in Genome Wide Complex Trait Analysis ("M-GCTA")

被引:59
作者
Eaves, Lindon J. [1 ]
St Pourcain, Beate [2 ,3 ,4 ]
Smith, George Davey [2 ,5 ]
York, Timothy P. [1 ]
Evans, David M. [2 ,5 ,6 ]
机构
[1] Virginia Commonwealth Univ, Dept Human & Mol Genet, Virginia Inst Psychiat & Behav Genet, Sch Med, Richmond, VA 23284 USA
[2] Univ Bristol, MRC Integrat Epidemiol Unit, Bristol, Avon, England
[3] Univ Bristol, Sch Oral & Dent Sci, Bristol, Avon, England
[4] Univ Bristol, Sch Expt Psychol, Bristol, Avon, England
[5] Univ Bristol, Sch Social & Community Med, Bristol, Avon, England
[6] Univ Queensland, Diamantina Inst, Translat Res Inst, Brisbane, Qld, Australia
基金
英国医学研究理事会; 澳大利亚研究理事会; 英国惠康基金;
关键词
Maternal effects; Genome wide complex trait analysis; GCTA; Twins; Heritability; Bias; Genetic relatedness; Covariance; Environment; SNPs; MAXIMUM-LIKELIHOOD; MODEL; TRANSMISSION; INHERITANCE; FETAL;
D O I
10.1007/s10519-014-9666-6
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Genome wide complex trait analysis (GCTA) is extended to include environmental effects of the maternal genotype on offspring phenotype ("maternal effects", M-GCTA). The model includes parameters for the direct effects of the offspring genotype, maternal effects and the covariance between direct and maternal effects. Analysis of simulated data, conducted in OpenMx, confirmed that model parameters could be recovered by full information maximum likelihood (FIML) and evaluated the biases that arise in conventional GCTA when indirect genetic effects are ignored. Estimates derived from FIML in OpenMx showed very close agreement to those obtained by restricted maximum likelihood using the published algorithm for GCTA. The method was also applied to illustrative perinatal phenotypes from similar to 4,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children. The relative merits of extended GCTA in contrast to quantitative genetic approaches based on analyzing the phenotypic covariance structure of kinships are considered.
引用
收藏
页码:445 / 455
页数:11
相关论文
共 25 条
[1]  
[Anonymous], 1982, Introduction to biometrical genetics: the study of continuous variation
[2]  
Boker SM, 2012, OPENMX 999 0 USER GU
[3]   OpenMx: An Open Source Extended Structural Equation Modeling Framework [J].
Boker, Steven ;
Neale, Michael ;
Maes, Hermine ;
Wilde, Michael ;
Spiegel, Michael ;
Brick, Timothy ;
Spies, Jeffrey ;
Estabrook, Ryne ;
Kenny, Sarah ;
Bates, Timothy ;
Mehta, Paras ;
Fox, John .
PSYCHOMETRIKA, 2011, 76 (02) :306-317
[4]   Cohort Profile: The 'Children of the 90s'-the index offspring of the Avon Longitudinal Study of Parents and Children [J].
Boyd, Andy ;
Golding, Jean ;
Macleod, John ;
Lawlor, Debbie A. ;
Fraser, Abigail ;
Henderson, John ;
Molloy, Lynn ;
Ness, Andy ;
Ring, Susan ;
Smith, George Davey .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2013, 42 (01) :111-127
[5]  
CAVALLIS.LL, 1973, AM J HUM GENET, V25, P618
[6]  
CLONINGER CR, 1979, AM J HUM GENET, V31, P176
[7]  
Corey L A, 1978, Prog Clin Biol Res, V24A, P201
[8]  
Dawkins R., 1989, The extended phenotype
[9]   MODEL FOR SIBLING EFFECTS IN MAN [J].
EAVES, L .
HEREDITY, 1976, 36 (APR) :205-214
[10]  
Evans DM, 2013, HUM MOL GENET, V22, P3807