Nodal solutions for fractional Schrodinger-Poisson problems

被引:8
作者
Long, Wei [1 ]
Yang, Jianfu [1 ]
Yu, Weilin [1 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
multipeak solutions; fractional Schrodinger-Poisson system; reduction method; POSITIVE SOLUTIONS; STANDING WAVES; GROUND-STATES; EQUATION; SPHERES;
D O I
10.1007/s11425-018-9452-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following fractional Schrodinger-Poisson problem: {epsilon(2s)(-Delta)(s)u + V(x)u + phi u = vertical bar u vertical bar(p-1)u, x is an element of R-N, (-Delta)(t)phi = u(2), x is an element of R-N, where epsilon > 0 is a small parameter, N >= 3 and V(x) is a potential function. We construct non-radial sign-changing solutions, whose components may have spikes clustering at the local minimum point of V(x).
引用
收藏
页码:2267 / 2286
页数:20
相关论文
共 39 条
[1]   NONLOCAL MODELS FOR NONLINEAR, DISPERSIVE WAVES [J].
ABDELOUHAB, L ;
BONA, JL ;
FELLAND, M ;
SAUT, JC .
PHYSICA D, 1989, 40 (03) :360-392
[2]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[3]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[4]  
Benci V., 1998, Topol Methods Nonlinear Anal, V11, P283, DOI DOI 10.12775/TMNA.1998.019
[5]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[6]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[7]   Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations [J].
Capella, Antonio ;
Davila, Juan ;
Dupaigne, Louis ;
Sire, Yannick .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) :1353-1384
[8]   Spectra of linearized operators for NLS solitary waves [J].
Chang, Shu-Ming ;
Gustafson, Stephen ;
Nakanishi, Kenji ;
Tsai, Tai-Peng .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) :1070-1111
[9]   Multiple semiclassical standing waves for fractional nonlinear Schrodinger equations [J].
Chen, Guoyuan .
NONLINEARITY, 2015, 28 (04) :927-949
[10]   CONCENTRATION PHENOMENON FOR FRACTIONAL NONLINEAR SCHRODINGER EQUATIONS [J].
Chen, Guoyuan ;
Zheng, Youquan .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) :2359-2376