First stability eigenvalue characterization of Clifford hypersurfaces

被引:31
作者
Perdomo, O [1 ]
机构
[1] Univ Valle, Dept Matemat, Cali, Colombia
关键词
D O I
10.1090/S0002-9939-02-06451-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stability operator of a compact oriented minimal hypersurface Mn-1 subset of S-n is given by J = -Delta - \\A\\(2) (n - 1), where A is the norm of the second fundamental form. Let lambda(1) be the first eigenvalue of J and de ne beta = lambda(1) - 2(n - 1). In 1968 Simons proved that 0 for any non-equatorial minimal hypersurface M S n. In this paper we will show that beta= 0 only for Clifford hypersurfaces. For minimal surfaces in S-3, let \M\ denote the area of M and let g denote the genus of M. We will prove that beta\M\ greater than or equal to 8pi ( g-1). Moreover, if M is embedded, then we will prove that beta greater than or equal to g-1/g+1. If in addition to the embeddeness condition we have that beta < 1, then we will prove that \M\ ≤ 16π/1-β.
引用
收藏
页码:3379 / 3384
页数:6
相关论文
共 11 条
[2]  
[Anonymous], 1983, P CTR MATH ANAL
[3]  
Chavel I., 1984, Eigenvalues in Riemannian geometry
[4]  
Chern SS, 1970, FUNCTIONAL ANAL RELA, P59, DOI [10.1007/978-3-642-48272-4_2, DOI 10.1007/978-3-642-25588-5_5, DOI 10.1007/978-3-642-48272-4_2]
[5]  
CHOI HI, 1983, J DIFFER GEOM, V18, P559
[6]   COMPLETE MINIMAL SURFACES IN S3 [J].
LAWSON, HB .
ANNALS OF MATHEMATICS, 1970, 92 (02) :335-&
[7]   LOCAL RIGIDITY THEOREMS FOR MINIMAL HYPERSURFACES [J].
LAWSON, HB .
ANNALS OF MATHEMATICS, 1969, 89 (01) :187-&
[8]  
PERDOMO O, 2000, THESIS INDIANA U
[9]   MINIMAL HYPERSURFACES ASYMPTOTIC TO QUADRATIC CONES IN IRN+1 [J].
SIMON, L ;
SOLOMON, B .
INVENTIONES MATHEMATICAE, 1986, 86 (03) :535-551
[10]   MINIMAL VARIETIES IN RIEMANNIAN MANIFOLDS [J].
SIMONS, J .
ANNALS OF MATHEMATICS, 1968, 88 (01) :62-&