Electrochemically-synthesized tungstate nanocomposites γ-WO3/CuWO4 and γ-WO3/NiWO4 thin films with improved band gap and photoactivity for solar-driven photoelectrochemical water oxidation

被引:28
|
作者
Zhu, Tao [1 ]
Chong, Meng Nan [1 ,2 ]
Chan, Eng Seng [1 ]
Ocon, Joey D. [3 ]
机构
[1] Monash Univ Malaysia, Sch Engn, Chem Engn Discipline, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul, Malaysia
[2] Monash Univ Malaysia, Sustainable Water Alliance, Adv Engn Platform, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul, Malaysia
[3] Univ Philippines Diliman, Dept Chem Engn, LEE, Quezon City 1101, Philippines
关键词
Photoelectrochemical water splitting; Cathodic electrodeposition; Photoelectrocatalyst; Tungsten trioxide; Solar hydrogen fuel; WO3; HYDROGEN; NANOPARTICLES; CUWO4;
D O I
10.1016/j.jallcom.2018.05.147
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The main aim of this study was to synthesize and characterise tungstate (WO3) nanocomposites with its metal-based nanostructures, such as copper (II) tungstate (CuWO4) and nickel tungsten oxide (NiWO4), as visible-light active thin film photoanodes for solar-driven photoelectrochemical (PEC) water oxidation. FE-SEM and AFM results showed that the bare as-deposited WO3 films were transformed into polycrystalline WO3 structure with highly agglomerated surfaces and roughness during the annealing-induced crystallisation process. XRD results suggested that the bare as-deposited WO3 films undergone phase transformation process from amorphous to the photoactive monoclinic-I (gamma-WO3) at 550 degrees C. XPS results indicated the existence of WO42-, Ni2+ and Cu2+ ions at 35.58 eV, 856 eV and 932.4 eV, respectively. Through the formation of WO3 nanocomposites, the energy band gap was effectively lowered from 2.7 eV (gamma-WO3) -> 2.3 eV (gamma-WO3/CuWO4) -> 2.1 eV (gamma-WO3/NiWO4) as estimated from the UV-Vis spectra. Finally, the corresponding photoactivity of WO3 nanocomposites was estimated by measuring the photocurrent density and gamma-WO3/NiWO4 nanocomposite structure was found to give the highest photocurrent density of 400 mu A/cm(2) at 1.5 V vs Ag/AgCl (4 M KCl). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 97
页数:8
相关论文
共 50 条
  • [21] Comparative Study of Photocarrier Dynamics in CVD-deposited CuWO4, CuO, and WO3 Thin Films for Photoelectrocatalysis
    Hirst, James
    Mueller, Soenke
    Peeters, Daniel
    Sadlo, Alexander
    Mai, Lukas
    Reyes, Oliver Mendoza
    Friedrich, Dennis
    Mitoraj, Dariusz
    Devi, Anjana
    Beranek, Radim
    Eichberger, Rainer
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2020, 234 (04): : 699 - 717
  • [22] Self-Assembled Urchin-Like CuWO4/WO3 Heterojunction Nanoarrays as Photoanodes for Photoelectrochemical Water Splitting
    Wang, Tao
    Fan, Xiaoli
    Gao, Bin
    Jiang, Cheng
    Li, Yang
    Li, Peng
    Zhang, Songtao
    Huang, Xianli
    He, Jianping
    CHEMELECTROCHEM, 2021, 8 (01): : 125 - 134
  • [23] ZnWO4/WO3 Composite for Improving Photoelectrochemical Water Oxidation
    Leonard, Kevin C.
    Nam, Ki Min
    Lee, Heung Chan
    Kang, Soon Hyung
    Park, Hyun S.
    Bard, Allen J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (31): : 15901 - 15910
  • [24] Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation
    Hong, Suk Joon
    Lee, Seungok
    Jang, Jum Suk
    Lee, Jae Sung
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) : 1781 - 1787
  • [25] A facile co-precipitation synthesis of novel WO3/NiWO4 nanocomposite with improved photocatalytic activity
    Thilagavathi, T.
    Venugopal, D.
    Thangaraju, D.
    Marnadu, R.
    Palanivel, Baskaran
    Imran, Mohd
    Shkir, Mohd
    Ubaidullah, Mohd
    AlFaify, S.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 133
  • [26] Influence of SnWO4, SnW3O9, and WO3 Phases in Tin Tungstate Films on Photoelectrochemical Water Oxidation
    Bozheyev, Farabi
    Fengler, Steffen
    Kollmann, Jiri
    Abou-Ras, Daniel
    Scharnagl, Nico
    Schieda, Mauricio
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (36) : 48565 - 48575
  • [27] In situ fabrication of WO3/CuWO4/CuO heterojunction photoanode for boosted interfacial charge transfer and enhanced photoelectrochemical water splitting
    Li, Jingjing
    Hu, Suping
    Liu, Shuangshuang
    Hou, Shaoshuai
    Li, Lihua
    Huang, Jinliang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 61 : 967 - 974
  • [28] Engineered WO3 nanorods for conformal growth of WO3/BiVO4 core–shell heterojunction towards efficient photoelectrochemical water oxidation
    Jinzhan Su
    Tao Zhang
    Lu Wang
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 4481 - 4491
  • [29] Improved the chrage transfer for highly efficient photoelectrochemical water oxidation: the case of WO3 and BiVO4
    Wiriyachailerd, C.
    Horprathum, M.
    Eiamchai, P.
    Ponchio, C.
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (06) : 13874 - 13878
  • [30] Platelike WO3 from hydrothermal RF sputtered tungsten thin films for photoelectrochemical water oxidation
    Li, Wenzhang
    Liu, Canjun
    Yang, Yahui
    Li, Jie
    Chen, Qiyuan
    Liu, Fangyang
    MATERIALS LETTERS, 2012, 84 : 41 - 43