Longitudinal wave propagation. Part I - Comparison of rod theories

被引:54
作者
Krawczuk, Marek
Grabowska, Joanna
Palacz, Magdalena
机构
[1] Polish Acad Sci, Inst Fluid Flow Machinery, PL-80952 Gdansk, Poland
[2] Gdansk Tech Univ, Dept Elect Engn & Automat, PL-80952 Gdansk, Poland
关键词
D O I
10.1016/j.jsv.2005.12.048
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The paper introduces new four spectral elements for analysis of longitudinal wave propagation in structures. The developed elements are based on the elementary, Love, Mindlin-Herrmann and three-mode theories. Certain differences in wave propagation behaviour are observed for the analysed models. For lower excitation frequencies the results obtained for all models are similar and from a practical point of view the spectral element based on the Love theory is adequate. For high frequency excitation these differences are considerable and only the Mindlin-Herrmann or three-mode models give correct results. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:461 / 478
页数:18
相关论文
共 15 条
[1]  
Bathe K, 2000, FINITE ELEMENT METHO
[2]  
CHEUNG YK, 1976, FINITE STRIP METHOD
[3]  
Doyle J., 1988, INT J ANAL EXPT MODA, V3, P1
[4]  
Doyle J.F., 1997, WAVE PROPAGATION STR
[5]  
DOYLE JF, 1990, INT J ANAL EXPT MODA, V5, P223
[6]   Modal spectral element formulation for axially moving plates subjected to in-plane axial tension [J].
Kim, J ;
Cho, J ;
Lee, U ;
Park, S .
COMPUTERS & STRUCTURES, 2003, 81 (20) :2011-2020
[7]   Spectral plate element for crack detection with the use of propagating waves [J].
Krawczuk, M ;
Palacz, M ;
Ostachowicz, W .
MODERN PRACTICE IN STRESS AND VIBRATION ANALYSIS, 2003, 440-4 :187-194
[8]   The dynamic analysis of a cracked Timoshenko beam by the spectral element method [J].
Krawczuk, M ;
Palacz, M ;
Ostachowicz, W .
JOURNAL OF SOUND AND VIBRATION, 2003, 264 (05) :1139-1153
[9]   Spectral-element method for Levy-type plates subject to dynamic loads [J].
Lee, U ;
Lee, J .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1999, 125 (02) :243-247
[10]  
Main I., 1993, VIBRATIONS WAVES PHY