Propagation of measurement noise through backprojection reconstruction in electrical impedance tomography

被引:18
|
作者
Frangi, AF
Riu, PJ
Rosell, J
Viergever, MA
机构
[1] Univ Zaragoza, Dept Ingn Elect & Comunicac, E-50018 Zaragoza, Spain
[2] Univ Zaragoza, Aragon Inst Engn Res I3A, E-50018 Zaragoza, Spain
[3] Univ Politecn Cataluna, Dept Ingn Elect, Div Instrumentac & Bioingn, Barcelona 08034, Spain
[4] Univ Utrecht, Image Sci Inst, NL-3508 GA Utrecht, Netherlands
关键词
backprojection reconstruction; electrical impedance tomography; error propagation theory; reconstruction error characterization;
D O I
10.1109/TMI.2002.800612
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A framework to analyze the propagation of measurement noise through backprojection reconstruction algorithms in electrical impedance tomography (EIT) is presented. Two measurement noise sources were considered: noise in the current drivers and in the voltage detectors. The influence of the acquisition system architecture (serial/semi-parallel) is also discussed. Three variants of backprojection reconstruction are studied: basic (unweighted), weighted and exponential backprojection. The results of error propagation theory have been compared with those obtained from simulated and experimental data. This comparison shows that the approach provides a good estimate of the reconstruction error variance. It is argued that the reconstruction error in EIT images obtained via backprojection can be approximately modeled as a spatially nonstationary Gaussian distribution. This methodology allows us to develop a spatial characterization of the reconstruction error in EIT images.
引用
收藏
页码:566 / 578
页数:13
相关论文
共 50 条
  • [41] Image reconstruction with discontinuous coefficient in electrical impedance tomography
    Rymarczyk, Tomasz
    Filipowicz, Stefan F.
    Sikora, Jan
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 149 - 151
  • [42] Two ANN reconstruction methods for electrical impedance tomography
    Ratajewicz-Mikolajczak, E
    Shirkoohi, GH
    Sikora, J
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 2964 - 2967
  • [43] COMPARING RECONSTRUCTION ALGORITHMS FOR ELECTRICAL IMPEDANCE TOMOGRAPHY.
    Yorkey, Thomas J.
    Webster, John G.
    Tompkins, Willis J.
    IEEE Transactions on Biomedical Engineering, 1987, BME-34 (11) : 843 - 852
  • [44] Data errors and reconstruction algorithms in electrical impedance tomography
    Breckon, W.R.
    Pidcock, M.K.
    Clinical Physics and Physiological Measurement, 1988, 9 (SUPPL. A): : 105 - 109
  • [45] Supershape augmented reconstruction method for electrical impedance tomography
    Gu, Danping
    Liu, Dong
    Deng, Jiansong
    Du, Jiangfeng
    2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,
  • [46] Block-sparse Reconstruction for Electrical Impedance Tomography
    Wang Qi
    Zhang Pengcheng
    Wang Jianming
    Li Xiuyan
    Lian Zhijie
    Chen Qingliang
    Chen Tongyun
    Chen Xiaojing
    He Jing
    Duan Xiaojie
    Wang Huaxiang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (03) : 676 - 682
  • [47] A new image reconstruction method for electrical impedance tomography
    Hou, WD
    Mo, WL
    BIOMEDICAL PHOTONICS AND OPTOELECTRONIC IMAGING, 2000, 4224 : 64 - 67
  • [48] Sparsity reconstruction in electrical impedance tomography: An experimental evaluation
    Gehre, Matthias
    Kluth, Tobias
    Lipponen, Antti
    Jin, Bangti
    Seppanen, Aku
    Kaipio, Jari P.
    Maass, Peter
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (08) : 2126 - 2136
  • [49] ON THE SENSITIVITY METHOD OF RECONSTRUCTION FOR ELECTRICAL-IMPEDANCE TOMOGRAPHY
    GADD, R
    RECORD, PM
    ROLFE, P
    CLINICAL PHYSICS AND PHYSIOLOGICAL MEASUREMENT, 1990, 11 (02): : 180 - 181
  • [50] A preconditioned hybrid reconstruction algorithm for electrical impedance tomography
    Fan, Wenru
    Wang, Huaxiang
    SEVENTH INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND CONTROL TECHNOLOGY: SENSORS AND INSTRUMENTS, COMPUTER SIMULATION, AND ARTIFICIAL INTELLIGENCE, 2008, 7127