Propagation of measurement noise through backprojection reconstruction in electrical impedance tomography

被引:18
|
作者
Frangi, AF
Riu, PJ
Rosell, J
Viergever, MA
机构
[1] Univ Zaragoza, Dept Ingn Elect & Comunicac, E-50018 Zaragoza, Spain
[2] Univ Zaragoza, Aragon Inst Engn Res I3A, E-50018 Zaragoza, Spain
[3] Univ Politecn Cataluna, Dept Ingn Elect, Div Instrumentac & Bioingn, Barcelona 08034, Spain
[4] Univ Utrecht, Image Sci Inst, NL-3508 GA Utrecht, Netherlands
关键词
backprojection reconstruction; electrical impedance tomography; error propagation theory; reconstruction error characterization;
D O I
10.1109/TMI.2002.800612
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A framework to analyze the propagation of measurement noise through backprojection reconstruction algorithms in electrical impedance tomography (EIT) is presented. Two measurement noise sources were considered: noise in the current drivers and in the voltage detectors. The influence of the acquisition system architecture (serial/semi-parallel) is also discussed. Three variants of backprojection reconstruction are studied: basic (unweighted), weighted and exponential backprojection. The results of error propagation theory have been compared with those obtained from simulated and experimental data. This comparison shows that the approach provides a good estimate of the reconstruction error variance. It is argued that the reconstruction error in EIT images obtained via backprojection can be approximately modeled as a spatially nonstationary Gaussian distribution. This methodology allows us to develop a spatial characterization of the reconstruction error in EIT images.
引用
收藏
页码:566 / 578
页数:13
相关论文
共 50 条
  • [21] Sparsity Constrained Reconstruction for Electrical Impedance Tomography
    Theertham, Ganesh Teja
    Varanasi, Santhosh Kumar
    Jampana, Phanindra
    IFAC PAPERSONLINE, 2020, 53 (02): : 362 - 367
  • [22] GVSPM ford reconstruction in electrical impedance tomography
    Dong, GY
    Endo, H
    Hayano, S
    Gao, SK
    Saito, Y
    IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (03) : 1630 - 1633
  • [23] Temporal image reconstruction in electrical impedance tomography
    Adler, Andy
    Dai, Tao
    Lionheart, William R. B.
    PHYSIOLOGICAL MEASUREMENT, 2007, 28 (07) : S1 - S11
  • [24] Influences of Compound Electrode Parameter on Measurement Sensitivity and Reconstruction Quality in Electrical Impedance Tomography
    Yan, Wang
    Hong, Sha
    Shu, Zhao
    Chaoshi, Ren
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6, 2007, 14 : 3567 - +
  • [25] A Bilateral Constrained Image Reconstruction Method Using Electrical Impedance Tomography and Ultrasonic Measurement
    Liu, Hao
    Zhao, Shu
    Tan, Chao
    Dong, Feng
    IEEE SENSORS JOURNAL, 2019, 19 (21) : 9883 - 9895
  • [26] An Image Reconstruction Algorithm for Electrical Impedance Tomography Using Measurement Estimation of Virtual Electrodes
    Yang, Lu
    Wu, Hongtao
    Liu, Kai
    Chen, Bai
    Yang, Yunjie
    Zhu, Chengjun
    Yao, Jiafeng
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 13012 - 13022
  • [27] Electrical Impedance Tomography Reconstruction Through Simulated Annealing with Incomplete Evaluation of the Objective Function
    Martins, Thiago de Castro
    Leon Bueno de Camargo, Erick Dario
    Lima, Raul Gonzalez
    Passos Amato, Marcelo Brito
    Guerra Tsuzuki, Marcos de Sales
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 7033 - 7036
  • [28] A BACKPROJECTION ALGORITHM FOR ELECTRICAL-IMPEDANCE IMAGING
    SANTOSA, F
    VOGELIUS, M
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (01) : 216 - 243
  • [29] Noise-based correction for electrical impedance tomography
    Mason, Kai
    Maurino-Alperovich, Florencia
    Holder, David
    Aristovich, Kirill
    PHYSIOLOGICAL MEASUREMENT, 2024, 45 (06)
  • [30] Logistic regression in image reconstruction in electrical impedance tomography
    Kozlowski, Edward
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Cieplak, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2020, 96 (05): : 95 - 98