Emergence of skewed non-Gaussian distributions of velocity increments in isotropic turbulence

被引:8
作者
Sosa-Correa, W. [1 ]
Pereira, R. M. [1 ]
Macedo, A. M. S. [1 ]
Raposo, E. P. [1 ]
Salazar, D. S. P. [2 ]
Vasconcelos, G. L. [3 ]
机构
[1] Univ Fed Pernambuco, Dept Fis, Lab Fis Teor & Computac, BR-50670901 Recife, PE, Brazil
[2] Univ Fed Rural Pernambuco, Unidade Educ Distancia & Tecnol, BR-52171900 Recife, PE, Brazil
[3] Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil
关键词
PROBABILITY DENSITY; INTERMITTENCY; DISSIPATION; STATISTICS; ENERGY; FLUID; TRANSITION; MODELS;
D O I
10.1103/PhysRevFluids.4.064602
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Skewness and non-Gaussian behavior are essential features of the distribution of short-scale velocity increments in isotropic turbulent flows. Yet, although the skewness has been generally linked to time-reversal symmetry breaking and vortex stretching, the form of the asymmetric heavy tails remain elusive. Here we describe the emergence of both properties through an exactly solvable stochastic model with a scale hierarchy of energy transfer rates. From a statistical superposition of a local equilibrium distribution weighted by a background density, the increments distribution is given by a novel class of skewed heavy-tailed distributions, written as a generalization of the Meijer G-functions. Excellent agreement in the multiscale scenario is found with numerical data of systems with different sizes and Reynolds numbers. Remarkably, the single-scale limit provides poor fits to the background density, highlighting the central role of the multiscale mechanism. Our framework can be also applied to describe the challenging emergence of skewed distributions in complex systems.
引用
收藏
页数:16
相关论文
共 49 条
  • [1] Skewed distributions in finance and actuarial science: a review
    Adcock, Christopher
    Eling, Martin
    Loperfido, Nicola
    [J]. EUROPEAN JOURNAL OF FINANCE, 2015, 21 (13-14) : 1253 - 1281
  • [2] A STATISTICAL-THEORY FOR THE DISTRIBUTION OF ENERGY-DISSIPATION IN INTERMITTENT TURBULENCE
    ANDREWS, LC
    PHILLIPS, RL
    SHIVAMOGGI, BK
    BECK, JK
    JOSHI, ML
    [J]. PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (06): : 999 - 1006
  • [3] [Anonymous], 1982, Statistical Properties of the Generalized Inverse Gaussian Distribution
  • [4] A parsimonious and universal description of turbulent velocity increments
    Barndorff-Nielsen, OE
    Blæsild, P
    Schmiegel, J
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2004, 41 (03) : 345 - 363
  • [5] Dynamical foundations of nonextensive statistical mechanics
    Beck, C
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (18) : 180601 - 1
  • [6] Homogeneous and Isotropic Turbulence: A Short Survey on Recent Developments
    Benzi, Roberto
    Biferale, Luca
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (06) : 1351 - 1365
  • [7] Shell models of energy cascade in turbulence
    Biferale, L
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2003, 35 : 441 - 468
  • [8] Multiscale model of gradient evolution in turbulent flows
    Biferale, Luca
    Chevillard, Laurent
    Meneveau, Charles
    Toschi, Federico
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (21)
  • [9] The log-dynamic brain: how skewed distributions affect network operations
    Buzsaki, Gyoergy
    Mizuseki, Kenji
    [J]. NATURE REVIEWS NEUROSCIENCE, 2014, 15 (04) : 264 - 278
  • [10] VELOCITY PROBABILITY DENSITY-FUNCTIONS OF HIGH REYNOLDS-NUMBER TURBULENCE
    CASTAING, B
    GAGNE, Y
    HOPFINGER, EJ
    [J]. PHYSICA D, 1990, 46 (02): : 177 - 200