Conservativeness of diffusion processes with drift

被引:2
作者
Kuwae, K [1 ]
机构
[1] Yokohama City Univ, Dept Math Sci, Yokohama, Kanagawa 2360027, Japan
关键词
semi-Dirichlet form; Dirichlet form; diffusion process; Kato class function; Hardy class function; Sobolev inequality; Novikov's condition; supermartingale; exponential martingale; conservativeness; Girsanov transformation;
D O I
10.1090/S0002-9939-04-07283-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the conservativeness of the Girsanov transformed diffusion process by drift b is an element of L-p(R-d --> R-d) with p greater than or equal to 4/(2- root2delta(\b\(2))/lambda) or p > 4d=(d+ 2), or p = 2 if \b\(2) is of the Hardy class with sufficiently small coefficient of energy delta(\b\(2)) < λ/2. Here λ > 0 is the lower bound of the symmetric measurable matrix-valued function a(x) := (a(i;) j (x))(i; j) appearing in the given Dirichlet form. In particular, our result improves the conservativeness of the transformed process by b is an element of L-d(R-d --> R-d) when d greater than or equal to 3.
引用
收藏
页码:2743 / 2751
页数:9
相关论文
共 28 条
[21]   Lower order perturbations of Dirichlet processes [J].
Röckner, M ;
Zhang, TS .
FORUM MATHEMATICUM, 2003, 15 (02) :285-297
[22]  
SHIGEKAWA I, 1998, NONSYMMETRIC DIFFUSI
[23]   On the Lp-theory of CO-semigroups associated with second-order elliptic operators, I [J].
Sobol, Z ;
Vogt, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 193 (01) :24-54
[24]  
Stampacchia G., 1965, ANN I FOURIER GRENOB, V15, P189
[25]   Perturbation of Dirichlet forms by measures [J].
Stollmann, P ;
Voigt, J .
POTENTIAL ANALYSIS, 1996, 5 (02) :109-138
[26]  
Stroock D. W., 1988, LECT NOTES MATH, VXXII, P316
[27]  
Sturm KT, 1996, J MATH PURE APPL, V75, P273
[28]  
Sturm KT, 1998, ANN PROBAB, V26, P1