Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks

被引:483
|
作者
Chen, Jiejie
Zeng, Zhigang [1 ]
Jiang, Ping
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
关键词
Fractional-order; Memristor-based neural networks; Global Mittag-Leffler stability; Synchronization; Filippov's solution; TIME-VARYING DELAYS; CHAOS; CALCULUS; MODEL; ELEMENT; FLUID;
D O I
10.1016/j.neunet.2013.11.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The present paper introduces memristor-based fractional-order neural networks. The conditions on the global Mittag-Leffler stability and synchronization are established by using Lyapunov method for these networks. The analysis in the paper employs results from the theory of fractional-order differential equations with discontinuous right-hand sides. The obtained results extend and improve some previous works on conventional memristor-based recurrent neural networks. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Global Mittag-Leffler synchronization of fractional-order neural networks with discontinuous activations
    Ding, Zhixia
    Shen, Yi
    Wang, Leimin
    NEURAL NETWORKS, 2016, 73 : 77 - 85
  • [2] Stability and synchronization of memristor-based fractional-order delayed neural networks
    Chen, Liping
    Wu, Ranchao
    Cao, Jinde
    Liu, Jia-Bao
    NEURAL NETWORKS, 2015, 71 : 37 - 44
  • [3] Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays
    Stamova, Ivanka
    NONLINEAR DYNAMICS, 2014, 77 (04) : 1251 - 1260
  • [4] Mittag-Leffler stability of fractional-order Hopfield neural networks
    Zhang, Shuo
    Yu, Yongguang
    Wang, Hu
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2015, 16 : 104 - 121
  • [5] Global Mittag-Leffler Synchronization for Impulsive Fractional-Order Neural Networks with Delays
    Rifhat, Ramziya
    Muhammadhaji, Ahmadjan
    Teng, Zhidong
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) : 205 - 213
  • [6] Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays
    Ivanka Stamova
    Nonlinear Dynamics, 2014, 77 : 1251 - 1260
  • [7] LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses
    Wu, Huaiqin
    Zhang, Xinxin
    Xue, Shunhui
    Wang, Lifei
    Wang, Yu
    NEUROCOMPUTING, 2016, 193 : 148 - 154
  • [8] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [9] Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays
    Zheng, Bibo
    Wang, Zhanshan
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 430
  • [10] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Song, Qiankun
    Huang, Junjian
    NEURAL PROCESSING LETTERS, 2018, 48 (01) : 459 - 479