Strong Terahertz Emission and Its Origin from Catalyst-Free InAs Nanowire Arrays

被引:37
作者
Arlauskas, Andrius [1 ]
Treu, Julian [2 ,3 ]
Saller, Kai [2 ,3 ,4 ]
Beleckaite, Ieva [1 ]
Koblmueller, Gregor [2 ,3 ]
Krotkus, Arunas [1 ]
机构
[1] Ctr Phys Sci & Technol, LT-01180 Vilnius, Lithuania
[2] Tech Univ Munich, Walter Schottky Inst, Dept Phys, D-85748 Garching, Germany
[3] Tech Univ Munich, Ctr Nanotechnol & Nanomat, D-85748 Garching, Germany
[4] Tech Univ Munich, Inst Nanoelect, D-80333 Munich, Germany
关键词
InAs nanowires; catalyst-free site selective area epitaxy; THz emission; time-domain spectroscopy (TDS); SEMICONDUCTOR SURFACES; TRANSPORT-COEFFICIENTS; POLARIZATION; FIELD;
D O I
10.1021/nl404737r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The unique features of nanowires (NW), such as the high aspect ratio and extensive surface area, are expected to play a key role in the development of very efficient semiconductor surface emitters in the terahertz (THz) spectral range. Here, we report on optically excited THz emission from catalyst-free grown arrays of intrinsically n-type InAs NWs using THz time-domain spectroscopy. Depending on the aspect ratio, the THz emission efficiency of the n-type InAs NWs is found to be up to 3 times stronger than that of bulk p-type InAs, known as currently the most efficient semiconductor-based THz surface emitter. Characteristic differences from bulk p-type InAs are particularly revealed from excitation wavelength-dependent measurements, showing monotonously increasing THz pulse amplitude in the NW arrays with increasing photon energy. Further polarization-dependent and two-color pump-probe experiments elucidate the physical mechanism of the THz emission: In contrast to bulk p-type InAs, where the anisotropic photoconductivity in the surface electric field is the dominant cause for THz pulse generation, the origin of the intrinsic THz emission in the NWs is based on the photo-Dember effect. The strong THz emission from high aspect ratio NW arrays further suggests an improved out-coupling of the radiation, while further enhancements in efficiency using core shell NW geometries are discussed.
引用
收藏
页码:1508 / 1514
页数:7
相关论文
共 35 条
  • [11] Terahertz emission from black silicon
    Hoyer, P.
    Theuer, M.
    Beigang, R.
    Kley, E. -B.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (09)
  • [12] InAs/InP radial nanowire heterostructures as high electron mobility devices
    Jiang, Xiaocheng
    Xiong, Qihua
    Nam, Sungwoo
    Qian, Fang
    Li, Yat
    Lieber, Charles M.
    [J]. NANO LETTERS, 2007, 7 (10) : 3214 - 3218
  • [13] Geometry-dependent terahertz emission of silicon nanowires
    Jung, Gyeong Bok
    Cho, Yong Jae
    Myung, Yoon
    Kim, Han Sung
    Seo, Young Suk
    Park, Jeunghee
    Kang, Chul
    [J]. OPTICS EXPRESS, 2010, 18 (16): : 16353 - 16359
  • [14] Growth and properties of InGaAs nanowires on silicon
    Koblmueller, Gregor
    Abstreiter, Gerhard
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2014, 8 (01): : 11 - 30
  • [15] Semiconductors for terahertz photonics applications
    Krotkus, Arunas
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (27)
  • [16] lbanes J. J., 2013, APPL PHYS LETT, V102
  • [17] Remote p-doping of InAs nanowires
    Li, H.-Y.
    Wunnicke, O.
    Borgstrom, M. T.
    Immink, W. G. G.
    van Weert, M. H. M.
    Verheijen, M. A.
    Bakkers, E. P. A. M.
    [J]. NANO LETTERS, 2007, 7 (05) : 1144 - 1148
  • [18] Enhanced InAs nanopillar electrical transport by in-situ passivation
    Lin, A.
    Shapiro, J. N.
    Scofield, A. C.
    Liang, B. L.
    Huffaker, D. L.
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (05)
  • [19] Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor
    Lind, Erik
    Persson, Ann I.
    Samuelson, Lars
    Wernersson, Lars-Erik
    [J]. NANO LETTERS, 2006, 6 (09) : 1842 - 1846
  • [20] Terahertz emission from cubic semiconductor induced by a transient anisotropic photocurrent
    Malevich, V. L.
    Ziaziulia, P. A.
    Adomavicius, R.
    Krotkus, A.
    Malevich, Y. V.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 112 (07)