RIP1 maintains DNA integrity and cell proliferation by regulating PGC-1α-mediated mitochondrial oxidative phosphorylation and glycolysis

被引:35
作者
Chen, W. [1 ]
Wang, Q. [1 ,2 ]
Bai, L. [1 ]
Chen, W. [1 ]
Wang, X. [1 ,2 ]
Tellez, C. S. [1 ]
Leng, S. [1 ]
Padilla, M. T. [1 ]
Nyunoya, T. [1 ]
Belinsky, S. A. [1 ]
Lin, Y. [1 ]
机构
[1] Lovelace Resp Res Inst, Mol Biol & Lung Canc Program, Albuquerque, NM 87108 USA
[2] Sichuan Univ, Key Lab Birth Defects & Related Dis, Lab Mol & Translat Med,West China Univ Hosp 2, Women & Children Minist Educ,Dept Obstet & Gyneco, Chengdu 610064, Peoples R China
关键词
receptor-interacting protein 1; metabolism; PGC-1; alpha; glycolysis; oxidative phosphorylation; DNA damage; RECEPTOR-INTERACTING PROTEIN; KAPPA-B ACTIVATION; DOMAIN KINASE RIP; TUMOR-SUPPRESSOR; CANCER; DEATH; DAMAGE; COACTIVATOR; BIOGENESIS; METABOLISM;
D O I
10.1038/cdd.2014.25
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aerobic glycolysis or the Warburg effect contributes to cancer cell proliferation; however, how this glucose metabolism pathway is precisely regulated remains elusive. Here we show that receptor-interacting protein 1 (RIP1), a cell death and survival signaling factor, regulates mitochondrial oxidative phosphorylation and aerobic glycolysis. Loss of RIP1 in lung cancer cells suppressed peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) expression, impairing mitochondrial oxidative phosphorylation and accelerating glycolysis, resulting in spontaneous DNA damage and p53-mediated cell proliferation inhibition. Thus, although aerobic glycolysis within a certain range favors cancer cell proliferation, excessive glycolysis causes cytostasis. Our data suggest that maintenance of glycolysis by RIP1 is pivotal to cancer cell energy homeostasis and DNA integrity and may be exploited for use in anticancer therapy.
引用
收藏
页码:1061 / 1070
页数:10
相关论文
共 56 条
[1]   NAD+ metabolism in health and disease [J].
Belenky, Peter ;
Bogan, Katrina L. ;
Brenner, Charles .
TRENDS IN BIOCHEMICAL SCIENCES, 2007, 32 (01) :12-19
[2]  
BIRNBOIM HC, 1985, P NATL ACAD SCI USA, V82, P6820, DOI 10.1073/pnas.82.20.6820
[3]   NEMO and RIP1 Control Cell Fate in Response to Extensive DNA Damage via TNF-α Feedforward Signaling [J].
Biton, Sharon ;
Ashkenazi, Avi .
CELL, 2011, 145 (01) :92-103
[4]   Inactivation of Foxo3a and Subsequent Downregulation of PGC-1α Mediate Nitric Oxide-Induced Endothelial Cell Migration [J].
Borniquel, Sara ;
Garcia-Quintans, Nieves ;
Valle, Inmaculada ;
Olmos, Yolanda ;
Wild, Brigitte ;
Martinez-Granero, Francisco ;
Soria, Estrella ;
Lamas, Santiago ;
Monsalve, Maria .
MOLECULAR AND CELLULAR BIOLOGY, 2010, 30 (16) :4035-4044
[5]  
Burma S, 2001, J BIOL CHEM, V276, P42462, DOI 10.1074/jbc.C100466200
[6]   Regulation of cancer cell metabolism [J].
Cairns, Rob A. ;
Harris, Isaac S. ;
Mak, Tak W. .
NATURE REVIEWS CANCER, 2011, 11 (02) :85-95
[7]   The NAD metabolome - a key determinant of cancer cell biology [J].
Chiarugi, Alberto ;
Dolle, Christian ;
Felici, Roberta ;
Ziegler, Mathias .
NATURE REVIEWS CANCER, 2012, 12 (11) :741-752
[8]   The DNA Damage Response: Making It Safe to Play with Knives [J].
Ciccia, Alberto ;
Elledge, Stephen J. .
MOLECULAR CELL, 2010, 40 (02) :179-204
[9]   Regulation of PGG1 promoter activity by protein kinase B and the forkhead transcription factor FKHR [J].
Daitoku, H ;
Yamagata, K ;
Matsuzaki, E ;
Hatta, M ;
Fukamizu, A .
DIABETES, 2003, 52 (03) :642-649
[10]   Links between metabolism and cancer [J].
Dang, Chi V. .
GENES & DEVELOPMENT, 2012, 26 (09) :877-890