Photonic crystal enhancement of a homogeneous fluorescent assay using submicron fluid channels fabricated by E-jet patterning

被引:19
作者
Tan, Yafang [1 ]
Sutanto, Erick [2 ]
Alleyne, Andrew G. [2 ]
Cunningham, Brian T. [1 ,3 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL USA
[3] Univ Illinois, Dept Bioengn, Urbana, IL USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
enhanced fluorescence; homogeneous assay; photonic crystal; submicron channel; E-jet printing; DNA MICROARRAYS; NANOCHANNELS; SENSITIVITY; PROTEIN; GLASS; CHIP; HYBRIDIZATION; IMMUNOASSAY; EMISSION; SILICON;
D O I
10.1002/jbio.201300158
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We demonstrate the enhancement of a liquid-based homogenous fluorescence assay using the resonant electric fields from a photonic crystal (PC) surface. Because evanescent fields are confined to the liquid volume nearest to the photonic crystal, we developed a simple approach for integrating a PC fabricated on a silicon substrate within a fluid channel with submicron height, using electrohydrodynamic jet (e-jet) printing of a light-curable epoxy adhesive to define the fluid channel pattern. The PC is excited by a custom-designed compact instrument that illuminates the PC with collimated light that precisely matches the resonant coupling condition when the PC is covered with aqueous media. Using a molecular beacon nucleic acid fluorescence resonant energy transfer (FRET) probe for a specific miRNA sequence, we demonstrate an 8x enhancement of the fluorescence emission signal, compared to performing the same assay without exciting resonance in the PC detecting a miRNA sequence at a concentration of 62 nM from a liquid volume of only approximate to 20 nL. The approach may be utilized for any liquid-based fluorescence assay for applications in point-of-care diagnostics, environmental monitoring, or pathogen detection. ((c) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
引用
收藏
页码:266 / 275
页数:10
相关论文
共 55 条
[1]   In vitro quantification of specific microRNA using molecular beacons [J].
Baker, Meredith B. ;
Bao, Gang ;
Searles, Charles D. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (02) :e13
[2]   The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering [J].
Cade, N. I. ;
Ritman-Meer, T. ;
Kwakwa, K. A. ;
Richards, D. .
NANOTECHNOLOGY, 2009, 20 (28)
[3]  
Chang Emmanuel, 2007, Biotechnology Journal, V2, P422, DOI 10.1002/biot.200600257
[4]  
Chiu C., 2008, P NAT AC SCI U UNPUB
[5]   Ultra-sensitive, label-free probing of the conformational characteristics of amyloid beta aggregates with a SERS active nanofluidic device [J].
Choi, Inhee ;
Huh, Yun Suk ;
Erickson, David .
MICROFLUIDICS AND NANOFLUIDICS, 2012, 12 (1-4) :663-669
[6]   Wide field-of-view lens-free fluorescent imaging on a chip [J].
Coskun, Ahmet F. ;
Su, Ting-Wei ;
Ozcan, Aydogan .
LAB ON A CHIP, 2010, 10 (07) :824-827
[7]   Tailored Plasmonic Gratings for Enhanced Fluorescence Detection and Microscopic Imaging [J].
Cui, Xiaoqiang ;
Tawa, Keiko ;
Hori, Hironobu ;
Nishii, Junji .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (04) :546-553
[8]   Nanofluidic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect [J].
Datta, A ;
Gangopadhyay, S ;
Temkin, H ;
Pu, QS ;
Liu, SR .
TALANTA, 2006, 68 (03) :659-665
[9]   How to do successful gene expression analysis using real-time PCR [J].
Derveaux, Stefaan ;
Vandesompele, Jo ;
Hellemans, Jan .
METHODS, 2010, 50 (04) :227-230
[10]   A low-cost, label-free DNA detection method in lab-on-chip format based on electrohydrodynamic instabilities, with application to long-range PCR [J].
Diakite, Mohamed Lemine Youba ;
Champ, Jerome ;
Descroix, Stephanie ;
Malaquin, Laurent ;
Amblard, Francois ;
Viovy, Jean-Louis .
LAB ON A CHIP, 2012, 12 (22) :4738-4747