AVO inversion based on generalized extreme value distribution with adaptive parameter estimation

被引:14
|
作者
Zhang, Jiashu [1 ]
Lv, Songfeng [1 ]
Liu, Yang [1 ]
Hu, Guangmin [2 ]
机构
[1] Southwest Jiaotong Univ, Sichuan Key Lab Signal & Informat Proc, Chengdu 610031, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Commun & Informat Engn, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
AVO inversion; Non-Gaussian; Generalized extreme value distribution; Quasi-CG algorithm; Adaptively variable step length; QUASI-NEWTON METHODS; ROBUST INVERSION; SEISMIC AVO;
D O I
10.1016/j.jappgeo.2013.07.006
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Amplitude Variation with Offset (AVO) inversion is very sensitive to noise and other uncertainties which are often far from Gaussian in the actual pre-stack seismic data, sometimes causing AVO inversion to give poor results. Since the generalized extreme value (GEV) distribution can efficiently fit any distribution with different parameters, to obtain steady and rational AVO inversion results, we use GEV distribution to model the distribution of the iterative residual error in the AVO inversion. The maximum likelihood method is used to re-evaluate the GEV distribution parameters of each iterative residual error to efficiently fit its non-Gaussian property and reduce the sensitivity of AVO inversion to non-Gaussian residual error. Quasi-Newton based Conjugate Gradient (QCG) AVO algorithm is derived from adaptive adjusted parameters GEV distribution to make sure the direction is always a descent direction for the objective function. Finally, a new choice of adaptive variable step length obtained by the Taylor expression of the residual vector can adaptively adjust the step length to accelerate the convergent speed. Both the synthetic and real seismic data tests illustrate the effectiveness of the proposed method. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 50 条
  • [1] ESTIMATION FOR A 4 PARAMETER GENERALIZED EXTREME VALUE DISTRIBUTION
    SCARF, PA
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (08) : 2185 - 2201
  • [2] PARAMETER AND QUANTILE ESTIMATION FOR THE GENERALIZED EXTREME-VALUE DISTRIBUTION
    CASTILLO, E
    HADI, AS
    ENVIRONMETRICS, 1994, 5 (04) : 417 - 432
  • [3] Adaptive Parameter Estimation of the Generalized Extreme Value Distribution Using Artificial Neural Network Approach
    Phoophiwfa, Tossapol
    Laosuwan, Teerawong
    Volodin, Andrei
    Papukdee, Nipada
    Suraphee, Sujitta
    Busababodhin, Piyapatr
    ATMOSPHERE, 2023, 14 (08)
  • [4] Parameter estimation of the generalized extreme value distribution for structural health monitoring
    Park, Hyun Woo
    Sohn, Hoon
    PROBABILISTIC ENGINEERING MECHANICS, 2006, 21 (04) : 366 - 376
  • [5] Simple parameter estimation technique for three-parameter generalized extreme value distribution
    Bhunya, P. K.
    Jain, S. K.
    Ojha, C. S. P.
    Agarwal, A.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2007, 12 (06) : 682 - 689
  • [6] Parameter and quantile estimation for the generalized extreme-value distribution: A second look
    Dupuis, DJ
    ENVIRONMETRICS, 1999, 10 (01) : 119 - 124
  • [7] Fast parameter estimation of generalized extreme value distribution using neural networks
    Rai, Sweta
    Hoffman, Alexis
    Lahiri, Soumendra
    Nychka, Douglas W.
    Sain, Stephan R.
    Bandyopadhyay, Soutir
    ENVIRONMETRICS, 2024, 35 (03)
  • [8] The effect of the generalized extreme value distribution parameter estimation methods in extreme wind speed prediction
    Takvor H. Soukissian
    Christos Tsalis
    Natural Hazards, 2015, 78 : 1777 - 1809
  • [9] The effect of the generalized extreme value distribution parameter estimation methods in extreme wind speed prediction
    Soukissian, Takvor H.
    Tsalis, Christos
    NATURAL HAZARDS, 2015, 78 (03) : 1777 - 1809
  • [10] PARAMETER-ESTIMATION FOR THE GENERAL EXTREME VALUE DISTRIBUTION
    PHIEN, HN
    EMMA, FTS
    WATER SA, 1989, 15 (02) : 57 - 64