Bimodules associated to modules of vertex operator algebras

被引:1
作者
Jiang, Wei [1 ]
Zhang, Wei [2 ]
机构
[1] Changshu Inst Technol, Dept Math, Changshu, Jiangsu, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
关键词
Bimodule; Lie algebra; representation; vertex algebra; vertex operator algebra; FUSION RULES; HOM FUNCTOR; REPRESENTATIONS;
D O I
10.1080/00927872.2018.1534119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a vertex operator algebra, M be an admissible V-module. An --bimodule for any nonnegative integers m and n is constructed and studied. The fusion rules for admissible V-modules are determined in terms of bimodule . for irreducible V-module M is given explicitly if V is rational.
引用
收藏
页码:2227 / 2250
页数:24
相关论文
共 22 条
[1]   Fusion rules for the free bosonic orbifold vertex operator algebra [J].
Abe, T .
JOURNAL OF ALGEBRA, 2000, 229 (01) :333-374
[2]  
[Anonymous], 1994, CONT MATH
[3]  
[Anonymous], 1993, Progress in Mathematics
[5]   Bimodules associated to vertex operator algebras [J].
Dong, Chongying ;
Jiang, Cuipo .
MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (04) :799-826
[6]   Bimodules and g-rationality of vertex operator algebras [J].
Dong, Chongying ;
Jiang, Cuipo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (08) :4235-4262
[7]   Representations of vertex operator algebras and bimodules [J].
Dong, Chongying ;
Ren, Li .
JOURNAL OF ALGEBRA, 2013, 384 :212-226
[8]   Regularity of rational vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
ADVANCES IN MATHEMATICS, 1997, 132 (01) :148-166
[9]   On quantum Galois theory [J].
Dong, CY ;
Mason, G .
DUKE MATHEMATICAL JOURNAL, 1997, 86 (02) :305-321
[10]   Hom functor and the associativity of tensor products of modules for vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
JOURNAL OF ALGEBRA, 1997, 188 (02) :443-475