Shubin Regularity for the Radially Symmetric Spatially Homogeneous Boltzmann Equation with Debye-Yukawa Potential

被引:0
作者
Glangetas, Leo [1 ]
Li, Haoguang [2 ]
机构
[1] Univ Rouen, CNRS UMR 6085, Math, F-76801 St Etienne Du Rouvray, France
[2] South Cent Univ Nationalities, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词
Boltzmann equation; shubin regularity; spectral decomposition; Debye-Yukawa potential; CAUCHY-PROBLEM; SHARP REGULARITY; LANDAU; HYPOELLIPTICITY;
D O I
10.1007/s10473-019-0602-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study the Cauchy problem for the radially symmetric spatially homogeneous Boltzmann equation with Debye-Yukawa potential. We prove that this Cauchy problem enjoys the same smoothing effect as the Cauchy problem defined by the evolution equation associated to a fractional logarithmic harmonic oscillator. To be specific, we can prove the solution of the Cauchy problem belongs to Shubin spaces.
引用
收藏
页码:1487 / 1507
页数:21
相关论文
共 33 条
[1]   STRONG SMOOTHING FOR THE NON-CUTOFF HOMOGENEOUS BOLTZMANN EQUATION FOR MAXWELLIAN MOLECULES WITH DEBYE-YUKAWA TYPE INTERACTION [J].
Barbaroux, Jean-Marie ;
Hundertmark, Dirk ;
Ried, Tobias ;
Vugalter, Semjon .
KINETIC AND RELATED MODELS, 2017, 10 (04) :901-924
[2]  
Bobylev A.V, 1988, MATH PHYS REV, V7, P111
[3]  
Cercignani C., 1988, BOLTZMANN EQUATION I
[4]   Analytic smoothness effect of solutions for spatially homogeneous Landau equation [J].
Chen, Hua ;
Li, Wei-Xi ;
Xu, Chao-Jiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (01) :77-94
[5]   Smoothing Effects for Classical Solutions of the Full Landau Equation [J].
Chen, Yemin ;
Desvillettes, Laurent ;
He, Lingbing .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 193 (01) :21-55
[6]   Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff [J].
Desvillettes, L ;
Wennberg, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :133-155
[7]  
Desvillettes L, 2009, T AM MATH SOC, V361, P1731
[8]  
Dolera E., 2011, B UNIONE MAT ITAL, V4, P47
[9]   Sharp regularity and Cauchy problem of the spatially homogeneous Boltzmann equation with Debye-Yukawa potential [J].
Glangetas, Leo ;
Li, Hao-Guang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) :1438-1461
[10]   SHARP REGULARITY PROPERTIES FOR THE NON-CUTOFF SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION [J].
Glangetas, Leo ;
Li, Hao-Guang ;
Xu, Chao-Jiang .
KINETIC AND RELATED MODELS, 2016, 9 (02) :299-371