A Lower Bound on the Bayesian MSE Based on the Optimal Bias Function

被引:34
作者
Ben-Haim, Zvika [1 ]
Eldar, Yonina C. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Technion, Haifa, Israel
基金
以色列科学基金会;
关键词
Bayesian bounds; Bayesian estimation; minimum mean-squared error (MSE) estimation; optimal bias; performance bounds; PARAMETER; ERROR; VARIANCE;
D O I
10.1109/TIT.2009.2030451
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A lower bound on the minimum mean-squared error (MSE) in a Bayesian estimation problem is proposed in this paper. This bound utilizes a well-known connection to the deterministic estimation setting. Using the prior distribution, the bias function which minimizes the Cramer-Rao bound can be determined, resulting in a lower bound on the Bayesian MSE. The bound is developed for the general case of a vector parameter with an arbitrary probability distribution, and is shown to be asymptotically tight in both the high and low signal-to-noise ratio (SNR) regimes. A numerical study demonstrates several cases in which the proposed technique is both simpler to compute and tighter than alternative methods.
引用
收藏
页码:5179 / 5196
页数:18
相关论文
共 40 条
  • [1] A BOUND ON MEAN-SQUARE-ESTIMATE ERROR
    ABEL, JS
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (05) : 1675 - 1680
  • [2] Abramowitz M., 1964, HDB MATH FUNCTIONS F, V55, DOI DOI 10.1119/1.15378
  • [3] [Anonymous], 2007, Found. Trends in Sig. Pro, DOI [DOI 10.1561/2000000008, 10.1561/2000000008]
  • [4] [Anonymous], 2007, Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking, DOI [DOI 10.1109/9780470544198.CH39, 10.1109/9780470544198.ch39]
  • [5] [Anonymous], P IEEE INT C AC SPEE
  • [6] LOCALLY BEST UNBIASED ESTIMATES
    BARANKIN, EW
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (04): : 477 - 501
  • [7] Extended Ziv-Zakai lower bound for vector parameter estimation
    Bell, KL
    Steinberg, Y
    Ephraim, Y
    VanTrees, HL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (02) : 624 - 637
  • [8] BOUNDS ON ERROR IN SIGNAL PARAMETER ESTIMATION
    BELLINI, S
    TARTARA, G
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1974, 22 (03) : 340 - 342
  • [9] A comment on the Weiss-Weinstein bound for constrained parameter sets
    Ben-Haim, Zvika
    Eldar, Yonina C.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (10) : 4682 - 4684
  • [10] BENHAIM Z, 2007, P 2 INT WORKSH COMP, P45