Distribution modulo 1 and the discrete universality of the Riemann zeta-function

被引:19
作者
Dubickas, Arturas [1 ]
Laurincikas, Antanas [1 ]
机构
[1] Vilnius State Univ, Dept Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2016年 / 86卷 / 01期
关键词
Riemann zeta-function; Voronin's theorem; Discrete universality; Distribution modulo 1;
D O I
10.1007/s12188-016-0123-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain some new discrete universality theorems on the approximation of analytic functions by shifts of the Riemann zeta-function. The novelty in formulation is that it involves shifts not by an arithmetical progression as before but by a more general sequence that is uniformly distributed modulo 1.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 1974, UNIFORM DISTRIBUTION
[2]  
[Anonymous], 1996, MATH ITS APPL
[3]  
Bagchi B, 1981, The Statistical Behaviour and Universality Properties of the Riemann Zeta Function and other Allied Dirichlet Series
[4]  
Billingsley P., 1968, CONVERGE PROBAB MEAS
[5]  
Heyer H., 1977, Probability Measures on Locally Compact Groups
[6]   Sharpening of the universality inequality [J].
Laurincikas, A. ;
Meska, L. .
MATHEMATICAL NOTES, 2014, 96 (5-6) :971-976
[7]  
Meska L., 2014, SIAULIAI MATH SEMIN, V7, P71
[8]  
MONTGOMERY HL, 1971, LECT NOTES MATH, P227
[9]   VALUE DISTRIBUTION OF ZETA-FUNCTIONS [J].
REICH, A .
ARCHIV DER MATHEMATIK, 1980, 34 (05) :440-451
[10]  
Steuding J., 1877, LECT NOTES MATH, V1877